The number of earthquakes as a function of magnitude decays as a power law.
This trend is usually justified using spring-block models, where slips with the
appropriate global statistics have been numerically observed. However,
prominent spatial and temporal clustering features of earthquakes are not
reproduced by this kind of modeling. We show that when a spring-block model is
complemented with a mechanism allowing for structural relaxation, realistic
earthquake patterns are obtained. The proposed model does not need to include a
phenomenological velocity weakening friction law, as traditional spring-block
models do, since this behavior is effectively induced by the relaxational
mechanism as well. In this way, the model provides also a simple microscopic
basis for the widely used phenomenological rate-and-state equations of rock
friction.Comment: 7 pages, 10 figures, comments welcom