11 research outputs found

    Selective inhibitors of cardiac ADPR cyclase as novel anti-arrhythmic compounds

    Get PDF
    ADP-ribosyl cyclases (ADPRCs) catalyse the conversion of nicotinamide adenine dinucleotide to cyclic adenosine diphosphoribose (cADPR) which is a second messenger involved in Ca2+ mobilisation from intracellular stores. Via its interaction with the ryanodine receptor Ca2+ channel in the heart, cADPR may exert arrhythmogenic activity. To test this hypothesis, we have studied the effect of novel cardiac ADPRC inhibitors in vitro and in vivo in models of ventricular arrhythmias. Using a high-throughput screening approach on cardiac sarcoplasmic reticulum membranes isolated from pig and rat and nicotinamide hypoxanthine dinuleotide as a surrogate substrate, we have identified potent and selective inhibitors of an intracellular, membrane-bound cardiac ADPRC that are different from the two known mammalian ADPRCs, CD38 and CD157/Bst1. We show that two structurally distinct cardiac ADPRC inhibitors, SAN2589 and SAN4825, prevent the formation of spontaneous action potentials in guinea pig papillary muscle in vitro and that compound SAN4825 is active in vivo in delaying ventricular fibrillation and cardiac arrest in a guinea pig model of Ca2+ overload-induced arrhythmia. Inhibition of cardiac ADPRC prevents Ca2+ overload-induced spontaneous depolarizations and ventricular fibrillation and may thus provide a novel therapeutic principle for the treatment of cardiac arrhythmias

    Invited Review Chemoenzymatic Synthesis of Lipidated Peptides

    No full text

    Toxicity of ionizing radiation (IR) in a human induced pluripotent stem cell (hiPSC)-derived 3D early neurodevelopmental model

    No full text
    Prenatal brain development is a complex and sensitive process, highly susceptible to environmental influences such as pollutants, stress, malnutrition, drugs, tobacco exposure, or ionizing radiation (IR). Disturbances in development may cause life-long disabilities and diseases, such as ADHD, childhood cancers, cognitive problems, depression, anxiety and more severe developmental disabilities. Due to increasing medical imaging, radiation therapy, natural terrestrial radiation, radioactive pollution and long-distance flights, humans are increasingly exposed to IR. However, data on impact of IR on very early human brain development are scarce, particularly in the very first weeks of gestation. Here we investigated the effects of low-dose X-ray IR (1 Gy) in a 3D early brain developmental model derived from human pluripotent stem cells. In this model very early neural stem cells, neuroectodermal progenitor cells (NEP), were exposed to low-dose IR and direct as well as delayed effects were investigated. Expression of 20 different marker genes crucial for normal neural development was determined 48 h and 9 days post IR (pIR). All but one of the analyzed marker genes were reduced 48 h after IR, and all but seven genes normalized their expression by day 9 pIR. Among the seven markers were genes involved in neurodevelopmental and growth abnormalities. Moreover, we could show that stemness of the NEP was reduced after IR. We were thus able to identify a significant impact of radiation in cells surviving low-dose IR, suggesting that low-dose IR could have a negative impact on the early developing human brain, with potential later detrimental effects.publishe

    Dual Glucagon-like Peptide 1 (GLP-1)/Glucagon Receptor Agonists Specifically Optimized for Multidose Formulations

    No full text
    Novel peptidic dual agonists of the glucagon-like peptide 1 (GLP-1) and glucagon receptor are reported to have enhanced efficacy over pure GLP-1 receptor agonists with regard to treatment of obesity and diabetes. We describe novel exendin-4 based dual agonists designed with an activity ratio favoring the GLP-1 versus the glucagon receptor. As result of an iterative optimization procedure that included molecular modeling, structural biological studies (X-ray, NMR), peptide design and synthesis, experimental activity, and solubility profiling, a candidate molecule was identified. Novel SAR points are reported that allowed us to fine-tune the desired receptor activity ratio and increased solubility in the presence of antimicrobial preservatives, findings that can be of general applicability for any peptide discovery project. The peptide was evaluated in chronic <i>in vivo</i> studies in obese diabetic monkeys as translational model for the human situation and demonstrated favorable blood glucose and body weight lowering effects

    A complete digitization of german herbaria is possible, sensible and should be started now

    No full text
    Plants, fungi and algae are important components of global biodiversity and are fundamental to all ecosystems. They are the basis for human well-being, providing food, materials and medicines. Specimens of all three groups of organisms are accommodated in herbaria, where they are commonly referred to as botanical specimens.The large number of specimens in herbaria provides an ample, permanent and continuously improving knowledge base on these organisms and an indispensable source for the analysis of the distribution of species in space and time critical for current and future research relating to global biodiversity. In order to make full use of this resource, a research infrastructure has to be built that grants comprehensive and free access to the information in herbaria and botanical collections in general. This can be achieved through digitization of the botanical objects and associated data.The botanical research community can count on a long-standing tradition of collaboration among institutions and individuals. It agreed on data standards and standard services even before the advent of computerization and information networking, an example being the Index Herbariorum as a global registry of herbaria helping towards the unique identification of specimens cited in the literature.In the spirit of this collaborative history, 51 representatives from 30 institutions advocate to start the digitization of botanical collections with the overall wall-to-wall digitization of the flat objects stored in German herbaria. Germany has 70 herbaria holding almost 23 million specimens according to a national survey carried out in 2019. 87% of these specimens are not yet digitized. Experiences from other countries like France, the Netherlands, Finland, the US and Australia show that herbaria can be comprehensively and cost-efficiently digitized in a relatively short time due to established workflows and protocols for the high-throughput digitization of flat objects.Most of the herbaria are part of a university (34), fewer belong to municipal museums (10) or state museums (8), six herbaria belong to institutions also supported by federal funds such as Leibniz institutes, and four belong to non-governmental organizations. A common data infrastructure must therefore integrate different kinds of institutions.Making full use of the data gained by digitization requires the set-up of a digital infrastructure for storage, archiving, content indexing and networking as well as standardized access for the scientific use of digital objects. A standards-based portfolio of technical components has already been developed and successfully tested by the Biodiversity Informatics Community over the last two decades, comprising among others access protocols, collection databases, portals, tools for semantic enrichment and annotation, international networking, storage and archiving in accordance with international standards. This was achieved through the funding by national and international programs and initiatives, which also paved the road for the German contribution to the Global Biodiversity Information Facility (GBIF).Herbaria constitute a large part of the German botanical collections that also comprise living collections in botanical gardens and seed banks, DNA- and tissue samples, specimens preserved in fluids or on microscope slides and more. Once the herbaria are digitized, these resources can be integrated, adding to the value of the overall research infrastructure. The community has agreed on tasks that are shared between the herbaria, as the German GBIF model already successfully demonstrates.We have compiled nine scientific use cases of immediate societal relevance for an integrated infrastructure of botanical collections. They address accelerated biodiversity discovery and research, biomonitoring and conservation planning, biodiversity modelling, the generation of trait information, automated image recognition by artificial intelligence, automated pathogen detection, contextualization by interlinking objects, enabling provenance research, as well as education, outreach and citizen science.We propose to start this initiative now in order to valorize German botanical collections as a vital part of a worldwide biodiversity data pool
    corecore