414 research outputs found

    Hyperspectral Measurements, Parameterizations, and Atmospheric Correction of Whitecaps and Foam From Visible to Shortwave Infrared for Ocean Color Remote Sensing

    Get PDF
    Breaking waves are highly reflective features on the sea surface that change the spectral properties of the ocean surface in both magnitude and spectral shape. Here, hyperspectral reflectance measurements of whitecaps from 400 to 2,500 nm were taken in Long Island Sound, USA of natural and manufactured breaking waves to explore new methods to estimate whitecap contributions to ocean color imagery. Whitecap reflectance was on average ~40% in visible wavelengths and decreased significantly into the near infrared and shortwave infrared following published trends. The spectral shape was well-characterized by a third order polynomial function of liquid water absorption that can be incorporated into coupled ocean-atmospheric models and spectral optimization routines. Localized troughs in whitecap reflectance correspond to peaks in liquid water absorption and depths of the troughs are correlated to the amount and intensity of the breaking waves. Specifically, baseline-corrected band depths at 980 and 1,200 nm explained 77 and 90% of the whitecap-enhanced reflectance on a logarithmic scale, respectively. Including these wavebands into future ocean color sensors could potentially provide new tools to estimate whitecap contributions to reflectance more accurately than with wind speed. An effective whitecap factor was defined as the optical enhancements within a pixel due to whitecaps and foam independent of spatial scale. A simple mixed-pixel model of whitecap and background reflectance explained as much of the variability in measured reflectance as more complex models incorporating semi-transparent layers of foam. Using an example atmosphere, enhanced radiance from whitecaps was detectable at the top of the atmosphere and a multiple regression of at-sensor radiance at 880, 1,038, 1,250, and 1,615 nm explained 99% of the variability in whitecap factor. A proposed model of whitecap-free reflectance includes contributions from water-leaving radiance, glint, and diffuse reflected skylight. The epsilon ratio at 753 and 869 nm commonly used for aerosol model selection is nearly invariant with whitecap factor compared to the ratio at shortwave infrared bands. While more validation data is needed, this research suggests several promising avenues to retrieve estimates of the whitecap reflectance and to use ocean color to further elucidate the physics of wave breaking and gas exchange

    Optics and Remote Sensing of Bahamian Carbonate Sediment Whitings and Potential Relationship to Wind-Driven Langmuir Circulation

    Get PDF
    Regions of milky white seas or whitings periodically occur to the west of Andros Island along the Great Bahama Bank where the bottom sediment consists of fine-grained aragonite mud. We present measurements of inherent optical properties within a sediment whiting patch and discuss the potential for monitoring the frequency, extent, and quantity of suspended matter from ocean colour satellite imagery. Sea spectral reflectance measured in situ and remotely from space revealed highly reflective waters elevated across the visible spectrum (i.e., whitened ) with a peak at 490 nm. Particulate backscattering was an order of magnitude higher than that measured at other stations throughout the region. The whiting also had one of the highest backscattering ratios measured in natural waters (0.05-0.06) consistent with water dominated by aragonite particles with a high index of refraction. Regular periodicity of 40 and 212 s evident in the light attenuation coefficient over the sampling period indicated patches of fluctuating turbidity on spatial scales that could be produced from regular rows of Langmuir cells penetrating the 5-m water column. We suggest that previously described mechanisms for sediment resuspension in whitings, such as tidal bursting and fish activity, are not fully consistent with these data and propose that wind-driven Langmuir cells reaching the full-depth of the water column may represent a plausible mechanism for sediment resuspension and subsequent whiting formation. Optics and remote sensing provide important tools for quantifying the linkages between physical and biogeochemical processes in these dynamic shallow water ecosystems

    Potential Export of Unattached Benthic Macroalgae to the Deep Sea Through Wind Driven Langmuir Circulation

    Get PDF
    Carbon export to the deep sea is conventionally attributed to the sinking of open ocean phytoplankton. Here, we report a Langmuir supercell event driven by high winds across the shallow Great Bahama Bank that organized benthic non-attached macroalgae, Colpomenia sp., into visible windrows on the seafloor. Ocean color satellite imagery obtained before and after the windrows revealed a 588 km2 patch that rapidly shifted from highly productive macroalgae to bare sand. We assess a number of possible fates for this macroalgae and contend that this event potentially transported negatively buoyant macroalgae to the deep Tongue of the Ocean in a pulsed export of \u3e 7 x 1010 g of carbon. This is equivalent to the daily carbon flux of phytoplankton biomass in the pelagic tropical North Atlantic and 0.2-0.8% of daily carbon flux from the global ocean. Coastal banks and bays are highly productive ecosystems that may contribute substantially to carbon export to the deep sea. Citation: Dierssen, H. M., R. C. Zimmerman, L. A. Drake, and D. J. Burdige (2009), Potential export of unattached benthic macroalgae to the deep sea through wind-driven Langmuir circulation, Geophys. Res. Lett., 36, L04602, doi: 10.1029/2008GL036188

    Proteomic profiling reveals mitochondrial dysfunction in the cerebellum of transgenic mice overexpressing DYRK1A, a Down syndrome candidate gene

    Full text link
    DYRK1A is a dual-specificity kinase that is overexpressed in Down syndrome (DS) and plays a key role in neurogenesis, neuronal differentiation and function, cognitive phenotypes, and aging. Dyrk1A has also been implicated in cerebellar abnormalities observed in association with DS, and normalization of Dyrk1A dosage rescues granular and Purkinje cell densities in a trisomic DS mouse model. However, the underlying molecular mechanisms governing these processes are unknown.To shed light on the effects of Dyrk1A overexpression in the cerebellum, here we investigated the cerebellar proteome in transgenic Dyrk1A overexpressing mice in basal conditions and after treatment with green tea extract containing epigallocatechin-3-gallate (EGCG), a DYRK1A inhibitor.Our results showed that Dyrk1A overexpression alters oxidative phosphorylation and mitochondrial function in the cerebellum of transgenic mice. These alterations are significantly rescued upon EGCG-containing green tea extract treatment, suggesting that its effects in DS could depend in part on targeting mitochondria, as shown by the partially restoration by the treatment of the increased mtDNA copy number in TG non-treated mice.Copyright © 2022 De Toma, Ortega, Fernåndez-Blanco, Calderón, Barahona, Trullàs, Sabidó and Dierssen

    A modern coastal ocean observing system using data from advanced satellite and in situ sensors – an example

    Get PDF
    Report of the Ocean Observation Research Coordination Network In-situ-Satellite Observation Working GroupThis report is intended to illustrate and provide recommendations for how ocean observing systems of the next decade could focus on coastal environments using combined satellite and in situ measurements. Until recently, space-based observations have had surface footprints typically spanning hundreds of meters to kilometers. These provide excellent synoptic views for a wide variety of ocean characteristics. In situ observations are instead generally point or linear measurements. The interrelation between space-based and in-situ observations can be challenging. Both are necessary and as sensors and platforms evolve during the next decade, the trend to facilitate interfacing space and in-situ observations must continue and be expanded. In this report, we use coastal observation and analyses to illustrate an observing system concept that combines in situ and satellite observing technologies with numerical models to quantify subseasonal time scale transport of freshwater and its constituents from terrestrial water storage bodies across and along continental shelves, as well as the impacts on some key biological/biogeochemical properties of coastal waters.Ocean Research Coordination Network and the National Science Foundatio

    Behavioral characterization of a mouse model overexpressing DSCR1/ RCAN1

    Get PDF
    DSCR1/ RCAN1 is a chromosome 21 gene found to be overexpressed in the brains of Down syndrome (DS) and postulated as a good candidate to contribute to mental disability. However, even though Rcan1 knockout mice have pronounced spatial learning and memory deficits, the possible deleterious effects of its overexpression in DS are not well understood. We have generated a transgenic mouse model overexpressing DSCR1/RCAN1 in the brain and analyzed the effect of RCAN1 overexpression on cognitive function. TgRCAN1 mice present a marked disruption of the learning process in a visuo-spatial learning task. However, no significant differences were observed in the performance of the memory phase of the test (removal session) nor in a step-down passive avoidance task, thus suggesting that once learning has been established, the animals are able to consolidate the information in the longer term

    Living up to the hype of hyperspectral aquatic remote sensing: science, resources and outlook

    Get PDF
    Intensifying pressure on global aquatic resources and services due to population growth and climate change is inspiring new surveying technologies to provide science-based information in support of management and policy strategies. One area of rapid development is hyperspectral remote sensing: imaging across the full spectrum of visible and infrared light. Hyperspectral imagery contains more environmentally meaningful information than panchromatic or multispectral imagery and is poised to provide new applications relevant to society, including assessments of aquatic biodiversity, habitats, water quality, and natural and anthropogenic hazards. To aid in these advances, we provide resources relevant to hyperspectral remote sensing in terms of providing the latest reviews, databases, and software available for practitioners in the field. We highlight recent advances in sensor design, modes of deployment, and image analysis techniques that are becoming more widely available to environmental researchers and resource managers alike. Systems recently deployed on space- and airborne platforms are presented, as well as future missions and advances in unoccupied aerial systems (UAS) and autonomous in-water survey methods. These systems will greatly enhance the ability to collect interdisciplinary observations on-demand and in previously inaccessible environments. Looking forward, advances in sensor miniaturization are discussed alongside the incorporation of citizen science, moving toward open and FAIR (findable, accessible, interoperable, and reusable) data. Advances in machine learning and cloud computing allow for exploitation of the full electromagnetic spectrum, and better bridging across the larger scientific community that also includes biogeochemical modelers and climate scientists. These advances will place sophisticated remote sensing capabilities into the hands of individual users and provide on-demand imagery tailored to research and management requirements, as well as provide critical input to marine and climate forecasting systems. The next decade of hyperspectral aquatic remote sensing is on the cusp of revolutionizing the way we assess and monitor aquatic environments and detect changes relevant to global communities

    Dissociation between CA3-CA1 synaptic plasticity and associative learning in TgNTRK3 transgenic mice

    Full text link
    Neurotrophins and their cognate receptors might serve as feedback regulators for the efficacy of synaptic transmission.Weanalyzed miceoverexpressing TrkC (TgNTRK3) for synaptic plasticity and the expression of glutamate receptor subunits. Animals were conditionedusing a trace [conditioned stimulus (CS), tone; unconditioned stimulus (US), shock] paradigm. A single electrical pulse presented to theSchaffer collateral– commissural pathway during the CS–US interval evoked a monosynaptic field EPSP (fEPSP) at ipsilateral CA1pyramidal cells. In wild types, fEPSP slopes increased across conditioning sessions and decreased during extinction, being linearlyrelated to learning evolution. In contrast, fEPSPs in TgNTRK3 animals reached extremely high values, not accompanied with a proportionateincrease in their learning curves. Long-term potentiation evoked in conscious TgNTRK3 was also significantly longer lasting thanin wild-type mice. These functional alterations were accompanied by significant changes inNR1andNR2BNMDAreceptor subunits, withno modification of NR1Ser 896 or NR1Ser 897 phosphorylation. No changes of AMPA and kainate subunits were detected. Results indicatethat the NT-3/TrkC cascade could regulate synaptic transmission and plasticity through modulation of glutamatergic transmission at theCA3–CA1 synapse
    • 

    corecore