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Intensifying pressure on global aquatic resources and services due to population growth and
climate change is inspiring new surveying technologies to provide science-based information in
support of management and policy strategies. One area of rapid development is hyperspectral
remote sensing: imaging across the full spectrum of visible and infrared light. Hyperspectral
imagery contains more environmentally meaningful information than panchromatic or
multispectral imagery and is poised to provide new applications relevant to society, including
assessments of aquatic biodiversity, habitats, water quality, and natural and anthropogenic
hazards. To aid in these advances, we provide resources relevant to hyperspectral remote
sensing in terms of providing the latest reviews, databases, and software available for
practitioners in the field. We highlight recent advances in sensor design, modes of
deployment, and image analysis techniques that are becoming more widely available to
environmental researchers and resource managers alike. Systems recently deployed on
space- and airborne platforms are presented, as well as future missions and advances in
unoccupied aerial systems (UAS) and autonomous in-water surveymethods. These systemswill
greatly enhance the ability to collect interdisciplinary observations on-demand and in previously
inaccessible environments. Looking forward, advances in sensor miniaturization are discussed
alongside the incorporation of citizen science, moving toward open and FAIR (findable,
accessible, interoperable, and reusable) data. Advances in machine learning and cloud
computing allow for exploitation of the full electromagnetic spectrum, and better bridging
across the larger scientific community that also includes biogeochemical modelers and climate
scientists. These advances will place sophisticated remote sensing capabilities into the hands of
individual users and provide on-demand imagery tailored to research and management
requirements, as well as provide critical input to marine and climate forecasting systems.
The next decade of hyperspectral aquatic remote sensing is on the cusp of revolutionizing the
way we assess and monitor aquatic environments and detect changes relevant to global
communities.
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INTRODUCTION

In response to mounting ecological stressors, natural resource
managers look to remote sensing as a means of providing timely
and spatially coherent environmental information that can
inform decision making. However, current products provided
by the ocean color community do not satisfy the needs required
for management of aquatic ecosystems spanning the open ocean
to inland waters. As water surfaces are much darker than
terrestrial surfaces, the signal emerging from the water is
obscured by the atmosphere, when viewed from high altitude
or space, and dedicated sensors with large dynamic ranges and
longer integration times are often required to achieve the
measurement sensitivity needed (Mouroulis et al., 2008). For
many applications, the spatial footprint of space-based ocean
color sensors can be too large (typically 0.5–1 km) and the revisit
time of land-imaging sensors, which have the capability to resolve
coasts and inland waters, is often too infrequent (weekly to
monthly). Further, increases in spatial resolution typically go
hand-in-hand with decreases in spectral resolution, and the
products afforded by limited spectral imagery are high in
uncertainty and low in specificity (Dekker and et al., 2018).
The tradeoffs between spectral, spatial, and temporal sampling
oftenmean that no single sensor or platform can provide all of the
needs for any single user community or application (Muller-
Karger et al., 2018). As a result, current capabilities for
monitoring water quality and biodiversity across diverse
habitats, from lakes and wetlands to coastal pelagic and
benthic communities, have only been demonstrated on limited
scales and have yet to achieve routine operational use by
environmental managers.

Traditional ocean color remote sensing involves multi-
spectral sensors that have a small number of broad
discontiguous spectral bands measuring portions of the
visible and infrared electromagnetic spectrum. These bands
were placed at key wavelength regions mainly designed to
detect the concentration of the primary pigment in
phytoplankton, chlorophyll a (Gordon and Morel, 1983).
Airborne and spaceborne sensor technology has advanced
rapidly in the last few decades to include imaging
spectrometers with continuous spectral coverage throughout
the visible and near-infrared spectrum (VNIR), typically
between 400 and 1,000 nm, and sometimes extending to the
shortwave infrared regions as well (up to 2,500 nm). To
differentiate from multi-spectral sensors with discrete, often
broad wavebands, such imaging spectrometers are commonly
referred to as “hyperspectral” imaging systems. The terms
“hyperspectral imaging” and “imaging spectrometry” are
interoperable. No standard definitions have been adopted as
to the number of bands and associated bandwidths required
for a sensor to be considered “hyperspectral.” Still, generally,
hyperspectral sensors for coastal applications have bandwidths
less than 15 nm and >20 bands in visible wavelengths.
However, sensitivity studies spanning a range of diverse
aquatic water bodies recommend hyperspectral sensors
bandwidths of 5 nm (Wolanin et al., 2016; Vandermeulen
et al., 2017; Dekker et al., 2018). Consequently, the majority

of the present and future hyperspectral sensors have at least 60
bands within the VNIR spectral range (Figure 1).

The field of aquatic hyperspectral remote sensing is advancing
rapidly, and new products are informing water quality
monitoring, as well as the biodiversity of organisms swimming
and floating in pelagic habitats and dwelling on and near the
bottom in benthic habitats (reviewed in Tyler et al., 2016;
Giardino et al., 2019; Kutser et al., 2020). The continuous
spectrum can always be sub-sampled to yield any multispectral
band combination to take advantage of legacy algorithms or to
amplify the signal to noise ratio. However, hyperspectral data
provides potential new applications that are not limited by gaps in
the spectrum based on historic notions of utility in open ocean
ecosystems. Indeed, several multispectral ocean color sensors are
programmable spectrometers resampled onboard to specific
wavebands (e.g., Sentinel-3 OLCI). Utilizing the full spectrum,
even simple approaches that characterize the spectral
dimensionality and variability can be used to identify and
track subtle differences between water masses and over time
that could not be tracked by bulk chlorophyll a estimates
(Vandermeulen et al., 2020). Full-spectrum estimates of the
diffuse attenuation coefficient (Kd) may lead to new insights
about aquatic ecosystems and biodiversity processes like
spectral niche partitioning and complementarity (Striebel
et al., 2009), or behavior and evolutionary traits of aquatic
invertebrates and vertebrates (Russell and Dierssen, 2015;
Cummings and Endler, 2018). Thus, imaging spectrometry can
inspire and support new algorithm concepts that require
continuous and dense spectral sampling. The benefits of
merging hyperspectral imagery with other types of remote
sensing imagery and environmental parameters through
modeling (IOCCG, 2020) will also be an avenue for the future

FIGURE 1 | Architecture of various international missions showing the
tradeoff between number of spectral bands, revisit frequency (X and Y axes,
respectively) and the spatial footprint (approximated as the size of circle). Gray
represent multi-spectral missions and colors represent the hyperspectral
missions. Modified from Hestir et al. (2015a).
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TABLE 1 | Recent reviews including hyperspectral aquatic remote sensing.

Primary
author (# Coauthors)

Title Publisher Year Subjects covered (relevant
to hyperspectral)

Gege and Dekker
(2020) (1)

Spectral and radiometric measurement requirements
for inland, coastal and reef waters

Rem. Sens. 2020 Sensitivity study of measurement needs for inland
and coastal water

Kutser, et al. (2020) (4) Remote sensing of shallow waters–A 50 years
retrospective and future directions

Rem. Sens. Environ. 2020 History, sensors, algorithms, satellite systems, future
directions

Dierssen et al. (2020) (4) Data needs for hyperspectral detection of algal diversity
across the globe

Oceanography 2020 Data recommendations, phytoplankton composition,
future needs

Banks et al. (2020) (10) Fiducial reference measurements for satellite ocean
color

Rem. Sens. 2020 Framework, standards, and protocols for validation
efforts

Jeziorska (2019) (0) UAS for wetland mapping and hydrological modeling Rem. Sens. 2019 Hardware, software, regulations, applications, data
collection and processing

Wu et al. (2019) (3) A review of drone-based harmful algae blooms
monitoring

Environ. Monit.
Assess.

2019 UAVs, sensors, work-flow, algorithms, challenges
and opportunities

Giardino et al. (2019) (12) Imaging spectrometry of inland and coastal waters:
State of the art, achievements and perspectives

Surv. Geophys. 2019 Theory, algorithms, uncertainties, applications, future
directions, in situ observations

IOCCG (2019) (23) Synergy between ocean color and biogeochemical/
ecosystem models

IOCCG Report 19 2019 Assimilation, forecast, and hindcast modeling
relevant to ocean color imagery

CEOS, Dekker et al.
(2018) (15)

Feasibility study for an aquatic ecosystem earth
observing system

Comm. on Earth obs.
Sat. (CEOS)

2018 Spectral, spatial and temporal requirements for
coastal and inland aquatic applications

Lodhi et al. (2018) (2) Hyperspectral imaging of earth observation: Platforms
and instruments

J. Indian Inst. Sci 2018 Sensors, platforms, applications (above water, in-
water, underwater)

IOCCG, Greb et al.
(2018) (23)

Earth observations in support of global water quality
monitoring

IOCCG Report 17 2018 Theory, sensors, approaches and limitations to water
quality

Manfreda et al.
(2018) (22)

On the use of unmanned erial systems for
environmental monitoring

Rem. Sens. 2018 Number of articles per year, sensors, software,
mission planning, inland waters

Khan et al. (2018). (4) Modern trends in hyperspectral image analysis: A
review

IEEE access 2018 HIS analysis approach including deep learning and
artifical intellagence

Muller-Karger et al.
(2018) (52)

Satellite sensor requirements for monitoring essential
biodiversity variables of coastal ecosystems

Ecol. Appl 2018 Societal needs, remote sensing approaches, HIS,
recommendations

Thamaga and Dube
(2018) (1)

Remote sensing of invasive water hyacinth (Eichhornia
crassipes): A review on applications and challenges

Rem. Sens. Appl.
Soc. Environ

2018 History, pubs/year, satellite systems, future directions

Werdell et al. (2018) (14) An overview of approaches and challenges for
retrieving marine inherent optical properties from ocean
color remote sensing

Prog. Oceanogr 2018 Theory, algorithms, uncertainties, future directions

Mishra et al. (2017) (24) Bio-optical modeling and remote sensing of inland
waters

Elsevier 2017 Book with 9 Chapters covering applications of bio-
optics to inland aquatic environments

Gege (2017) (0) Radiative transfer theory for inland waters Elsevier 2017 Radiometry, inherent and apparent optical
properties, bio-optical models

Szabo et al. (2018) (5) Zoomin on aerial surveys Springer 2017 Basic system elements, mapping procedures,
sensors, platforms

Pu et al. (2017) (3) Applications of imaging spectrometry in inland water
quality monitoring - a review of recent developments

Water Air Soil Pollut. 2017 Review of airborne and satellite systems, theory,
algorithms, in situ spectrometers for ground truth,
future outlook

Bracher et al. 2017a (21) Obtaining phytoplankton diversity from ocean color: A
scientific roadmap for future development

Front. Mar. Sci. 2017 State of science, user needs, data gaps and future
directions

Gholizdeh et al. (2016) (2) A comprehensive review on water quality parameters
estimation using remote sensing techniques

Sensors 2016 Hyperspectral systems, airborne and satellite
systems, history, theory, algorithms, etc

Hedley et al. (2016a) (12) Remote sensing of coral reefs for monitoring and
management: A review

Rem. Sens. 2016 Satellite and airborne hyperspectral systems,
applications, products, societal value

Johnsen et al. (2013) (3) The use of hyperspectral imaging deployed on
remotely operated vehicles -- methods and
applications

Woodhead Publ. 2016 Underwater deep imaging with light sources,
corrections for platform dynamics, methods to
ground-truth images

Tyler et al. (2016) (5) Development in earth observation for the assessment
and monitoring of inland, terrestrial, coastal and shelf-
sea waters

Sci. Total Environ. 2016 Satellite sensors, theory, algorithmic approaches,
examples

Hestir et al. (2015) (6) Measuring freshwater aquatic ecosystems: The need
for a hyperspectral global mapping satellite system

Rem. Sens. Environ. 2015 Application and product case studies, sensor
resolution needs, publications/year since 2000

Mouw et al. (2015) (11) Aquatic color radiometry remote sensing of coastal and
inland waters: Challenges and recommendations for
future satellite systems

Rem. Sens. Environ. 2015 Theory, algorithms, satellite systems, in situ
measurements, future recommendations

Palmer et al. (2015) (2) Remote sensing of inland waters: Challenges,
progress, and future directions

Rem. Sens. Environ. 2015 Hyperspectral systems, historical review, future
outlook

(Continued on following page)
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to address a wide range in societal problems including the
response of coastal ocean ecosystems to population growth
and climate change (Muller-Karger et al., 2018).

The motivation for this review emerged from a recent
workshop focused on the advances and challenges of
hyperspectral remote sensing technology applied to coastal
aquatic environments. The workshop, conducted at the
University of Hawai’i at M�anoa on 15 and 16 May 2018, was
convened by the Alliance for Coastal Technologies (ACT) and
sponsored by the National Oceanic and Atmospheric
Administration (NOAA)/U.S. Integrated Observing System
(US.IOOS) (workshop report available at http://www.act-us.
info/workshops.php). The overarching goal of this article is to
present advances and resources relevant to hyperspectral remote
sensing in aquatic ecosystems for those newly diving into the
field, as well as for those already deeply submerged within remote
sensing and aquatic optics. With the advent of new sensor
capabilities across all platforms from orbiting in space, to
flying autonomously over reefs (Joyce et al., 2019), to cruising
along the dark, cold ocean floor (Johnsen et al., 2013),
hyperspectral remote sensing is rapidly growing its user base.
Many resources are already available for algorithm developers,
and users of the data depending on the specific user need. Here,
we have compiled lists of reviews, software, and databases
relevant to developing and implementing aquatic hyperspectral
remote sensing approaches. Finally, we discuss how remote
sensing of coastal aquatic systems might advance in the
coming decade.

A BLAST FROM THE PAST: A BRIEF
HISTORY OF HYPERSPECTRAL IMAGING

Many excellent reviews have been written in the last five years
alone about the history and requirements for aquatic remote
sensing that relate to hyperspectral imaging spectroscopy
(Table 1). Some reviews focus on specific habitats from
open ocean to coastal and inland waters; some review
techniques relevant for data collection or modeling; and,
others focus on applications including water quality
assessment, phytoplankton composition, bathymetry and
benthic cover in optically shallow waters. Here, we build on
those studies to provide a summary of advances made
specifically in imaging spectroscopy for aquatic applications.
This overview is meant to show the breadth of the field and
theoretical studies from the vast oligotrophic ocean to coral
reefs to lakes and rivers.

The origins of the discipline are challenging to pinpoint, as it
arose from a merging of technology and research coming from
limnology and oceanography, as well as building from advances
made in terrestrial, atmospheric, and cryospheric remote sensing.
Wernand (2011) provides a comprehensive overview of the
scientists, their hypothesis and experiments in the historical
development of hydrologic optics since the seventeenth
century that culminated in the theoretical foundations
provided by Raman (Raman, 1922) and Shoulejkin
(Shoulejkin, 1923). Field experiments were also conducted at
that time, such as those done by the limnologist Edison Pettit who
conducted spectroscopic investigations into the volume scattering
and absorption processes underlying the color of Crater Lake,
OR, USA (Pettit, 1936). Modern optical oceanography is
considered to have originated around the 1950s, with the
pioneering research by the Danish oceanographer Nils Jerlov
who established a continuum of optical water types from the clear
pelagic ocean to the turbid coast (Jerlov, 1951, 1963). However, as
noted below, aquatic remote sensing really began in earnest in the
late 1960s and 1970s with theoretical and experimental research
spanning inland, coastal and open ocean environments (reviewed
in Acker, 2015; Kutser et al., 2020).

In the late 1960s, Clarke et al. (1970) detail an airborne
spectroradiometer flown in North Atlantic waters that
demonstrated how increasing amounts of chlorophyll were
found to be associated with a relative decrease in the blue
portion of the spectra and an increase in the green in
backscattered light (Clarke et al., 1970). Concomitantly in
1970, international collaboration on the development of
spectrometers culminated in a sea trial as part of Scientific
Committee on Oceanographic Research (SCOR) Working
Group 15 that included optical measurements in combination
with phytoplankton species composition and sizes, primary
productivity, chlorophyll and nutrients with researchers from
Australia, Denmark, France, Japan, Norway, Russia, Scotland,
and the United States (Tyler, 1970). Collectively, such
international partnerships provided proof-of-concept evidence
for satellite-based ocean color remote sensing. This underpinning
work led to the first ocean color mission, the Coastal Zone Color
Scanner (CZCS), and continues today with the International
Ocean Color Coordinating Group (IOCCG).

In addition to these oceanic studies, many other parallel lines
of research were occurring in the 1970s in the broader field of
experimental and theoretical aquatic optics. Investigations were
beginning in shallow water optics with the mapping of the Great
Barrier Reef using Landsat data (Smith et al., 1975) and the
seminal work of Polcyn et al. (1970) and Lyzenga (1978), which

TABLE 1 | (Continued) Recent reviews including hyperspectral aquatic remote sensing.

Primary
author (# Coauthors)

Title Publisher Year Subjects covered (relevant
to hyperspectral)

Blondeau-Patissier et al.
(2014) (4)

A review of ocean color remote sensing methods and
statistical techniques for the detection, mapping and
analysis of phytoplankton blooms in coastal and open
oceans

Prog. Oceanogr. 2014 Ocean color algorithms, References to hyperspectral
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provided methods to retrieve bathymetry and benthic
composition of sand, mud and vegetation from passive remote
sensing imagery (Polcyn et al., 1970; Lyzenga, 1978). Some of the
first laboratory reflectance measurements of phytoplankton
cultures were summarized in a 1977 report entitled
“Assessment of Aquatic Environments by Remote Sensing”
demonstrating that blue-green algae, green algae and diatoms
could be differentiated from “laboratory reflectance fingerprints”
(Adams et al., 1977). Multi-spectral and thermal airborne remote
sensing of algal blooms was initiated in the Great Lakes (Strong,
1974). Goldman et al. (1974) used color and multispectral aerial
photography to delineate sediment plumes into Lake Tahoe,
California and correlate them with suspended sediment,
inorganic carbon, light penetration and primary productivity
(Goldman et al., 1974). Concurrently, radiative transfer
simulations studies helped to provide a qualitative and
quantitative interpretation of the water leaving signal (Gordon
et al., 1975; Gordon and McCluney, 1975). Further theoretical
and mathematical developments were established when
Preisendorfer culminated his research on radiative transfer
theory in 1976 with a six-volume treatize entitled Hydrologic
Optics (Preisendorfer, 1976). Preisendorfer’s method for radiative
transfer solution is implemented in the Hydrolight software, that
became the community standard for the simulation of scalar
aquatic spectral reflectance (Mobley, 1994). This decade of
independent and parallel research provided the foundations
for many of the techniques and applications for the broader
field of aquatic hyperspectral remote sensing today.

Over the past three decades, the emergence of imaging
spectroscopy with the ability to produce a spectrally resolved
image of a scene has advanced rapidly in sensor technology,
calibration, deployment modes, and applications as briefly
outlined below. With the limited availability of satellite data,
the period between the early 1980s and 1999 ushered in the age of
operational aircraft-based hyperspectral from AVIRIS to CASI
(reviewed in Giardino et al., 2019). Other relevant airborne
hyperspectral sensors were the Operational Modular Imaging
Spectrometer (OMIS) and the Pushbroom Hyperspectral
Imaging (PHI) developed in China (Tong et al., 2001). These
airborne imagers were designed primarily for terrestrial
applications but were nonetheless successfully used to identify
brighter aquatic targets such as identifying sediment plumes (e.g.
Moore et al. (1999) that became the basis for the MERIS bright
pixel atmospheric correction) and bathymetry and benthic
composition in shallow water. Collins and Pattiaratchi (1984)
used the Daedalus Airborne Thematic Mapper, which was
operated alongside CASI by the Natural Environment
Research Council Airborne Research Facility for its thermal
capabilities, noting that both relative and absolute increases in
suspended sediment produced a shift toward longer (red)
wavelengths.

However, these initial aquatic applications had limited success
due to the airborne sensors having a relatively low signal-to-noise
ratio (SNR) and a limited dynamic range (reviewed in Kutser
2020). The operators needed to set the appropriate integration
time for the low aquatic signal and develop robust procedures for
instrument calibration. Therefore, data from these sensors were

often aggregated spectrally and spatially to obtain higher signal or
smoothed considerably in post-processing to reduce spectral
noise (Carder et al., 1993) and provided only multispectral
data over aquatic targets (Mumby et al., 1997; Sathyendranath
et al., 1997). As a result, little was gained from the hyperspectral
signal.

The 2000s were a time for targeting new sensors and programs
designed to facilitate aquatic applications. Even though the
potential for imaging spectrometry was recognized early on
(Dekker and Donze, 1994), inland and coastal waters provide
critical challenges to spectrometer system design including
reflectance of targets varying from <1% for dark water to over
90% for bright sand. The Ocean Portable Hyperspectral Imager
for Low-Light Spectroscopy (PHILLS) was a pushbroom-
scanning instrument designed specifically for aquatic
applications (Davis et al., 2002). Early deployments of Ocean
PHILLS include those as part of the Coastal Benthic Optical
Properties (CoBOP) program at Lee Stocking Island, Bahamas
(May/June 1999 and May 2000), the Hyperspectral Coupled
Ocean Dynamics Experiments (HyCODE) program on the
West Florida Shelf (2000 and 2001) and at the LEO-15 site in
New Jersey (July 2000 and July 2001). The field and airborne
efforts from those projects provided some of the foundational
hyperspectral algorithms for evaluating optically important
constituents, estimating vertical structure in the near-surface
ocean, developing benthic cover and bathymetry algorithms,
and refining treatment of optical properties in coupled ocean-
atmosphere models (Davis, 2001; Mazel, 2002; Chang et al., 2004;
Wang, 2004).

More technological advances were also brought about by the
National Aeronautics and Space Administration (NASA) Jet
Propulsion Laboratory (JPL) Portable Hyperspectral Imaging
SpectroMeter (PRISM) developed in 2008 designed to handle
the dynamic range of aquatic surfaces, with an improved spectral
resolution, polarization sensitivity, response uniformity, and
minimal spectrometer distortions (Mouroulis et al., 2008).
First flight results over calibration sites in Elkhorn Slough,
California, demonstrated good agreement between in situ and
remotely sensed data (Heupel et al., 2013; Mouroulis et al., 2014)
and the sensor has found modern use in applications from
differentiating floating vegetation, water contaminants,
chlorophyll fluorescence, and coral reef assessments (Dierssen
et al., 2015; Fichot et al., 2016; Garcia et al., 2018; Erickson et al.,
2019). Similar high-quality imagery is now available in sensors
like Airborne Prism Experiment (APEX) and from commercial
vendors (reviewed in Giardino et al., 2019).

Moving from suborbital to orbital platforms, the first decade of
the 21st Century also involved the launch of several hyperspectral
imagers with applications to aquatic ecosystems including:
Hyperion launched aboard the EO-1 spacecraft in 2000
(Dekker et al., 2001), the Compact High Resolution Imaging
Spectrometer (CHRIS) launched on PROBA-1 in 2001 (Cutter
et al., 2004), the Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography (SCIAMACHY) launched on
ENVISAT in 2002 (Bracher et al., 2009) and the Hyperspectral
Imager for the Coastal Ocean (HICO) installed on the
International Space Station in 2009 (Ryan et al., 2014). Except
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for SCIAMCHY, these sensors had smaller footprints optimized
for coastal applications (20–90 m) and were targeted mappers
acquiring data over particular areas based on data acquisition
requests with limited collections per day (Figure 1). Similar to the
early airborne instruments, the data exhibited low signals over
many aquatic targets and were often binned spatially and
spectrally for aquatic applications (Hestir et al., 2015).
SCIAMACHY provided global mapping capabilities at much
finer spectral resolution (<0.5 nm bands), but at much larger
spatial resolutions of 30 km pixels. Such applications
demonstrated that hyperspectral signals could move beyond
typical remote sensing methods and be used to assess
bathymetry, benthic cover, and phytoplankton composition.
These applications are summarized in many different reviews
of hyperspectral and aquatic remote sensing provided in Table 1.

LAUNCHING THE FUTURE OF
HYPERSPECTRAL IMAGING

Here we discuss both the orbital and suborbital systems proposed
for hyperspectral imaging of aquatic ecosystems including
advances in sensor miniaturization and autonomous sampling
platforms.

Satellite Systems
Building on these past successes, we now find ourselves on the
verge of significant global advances in hyperspectral remote
sensing with the recent and pending launch of an array of
hyperspectral satellites poised to sense the Earth from different
platforms and orbits (Figure 1). Most recently, several targeted
mappers have been launched, of which we highlight a few
missions with publicly available imagery such as Deutsches
Zentrum fur Luft–und Raumfahrt German Aerospace Center
(DLR) Earth Sensing Imaging Spectrometer (DESIS) (Müller
et al., 2016) installed on the International Space Station and
the launch of China’s Advanced Hyperspectral Imager (AHSI)
onboard the GaoFeng-5 satelite (Liu et al., 2019) in 2018,
followed by the launch of the PRecursore IperSpettrale della
Missione Applicativa (PRISMA) sensor by the Italian Space
Agency in 2019 (Giardino et al., 2020) and HyperScout
instruments launched on nanosatellites (Esposito and
Zuccaro Marchi (2019). On the future horizon are low-
Earth orbiting global mapping hyperspectral missions
including NASA’s Plankton Erosol Cloud and ocean
Ecosystem (PACE) and Surface Biology and Geology (SBG)
missions, and the European Space Agency’s Copernicus
Hyperspectral Imaging Mission for the Environment
(CHIME), as well as geostationary missions like NASA’s
Geosynchronous Littoral Imaging and Monitoring
Radiometer (GLIMR). Recognizing that no single mission
can satisfy all applications, concepts have started to
formulate among space agencies, researchers, resource
managers, and policy experts for combining multiple
instruments into a virtual constellation that meets many
observation needs, as well as combining hyperspectral
imagery with other sources of remote, in situ, and modeled

data to better assess ecosystem health and biodiversity (Duffy
et al., 2013; Greb et al., 2018; Muller-Karger et al., 2018).

Suborbital Systems
It is exciting that sensor design has also moved toward smaller,
solid state systems requiring less power for deployment on small
satellites (Doubleday et al., 2015; Bender et al., 2018), aircraft,
autonomous unoccupied aerial systems (UAS) (Wu et al., 2019),
or small watercraft dedicated to specific problems (Klemas, 2015;
Ackleson et al., 2017). This represents an emerging dimension to
how modern remote sensing data are acquired. Traditional
sources of coverage by orbiting sensors are inherently limited
by cloud cover and orbital dynamics, and engineering trades
made in sensor design between spatial, spectral and radiometric
resolution. Portable sensors flown on aircraft or drones provide a
critical sampling niche distinct from satellite-borne sensors that
are particularly well suited for coastal and inland water
applications Such sensors can sample at fine spatial scales, can
operate under clouds and with nearly unlimited repeat coverage,
and are effective platforms for high resolution active sensors (e.g.,
lidar). Aircraft overflights are also subject to limitations of
transporting gear, aircraft and personnel to the study area, as
well as being subject to local weather conditions and flight
restrictions. Autonomous systems are more portable and
completely controlled by the individual research team,
permitting imaging schedule and geometry, e.g., relative to the
Sun location, to be adjusted in real time.

Unoccupied Aerial Systems
Perhaps some of the greatest future advances will come with the
rapid advances in UAS technology. The term UAS is used to
include both the unoccupied aerial vehicle (UAV) or drone, as
well as the ground-based control system. UAS for civilian
applications started in the early 1980s using remote controlled
aircraft equipped with aerial mapping cameras (Wester-
Ebbinghaus, 1980). Since that time, both sensor and drone
technology have advanced significantly (Colomina and Molina,
2014; Aasen et al., 2018) with decreasing expense and mission
planning, and navigation software requiring less experience from
the remote operator. Users can readily create custom UAS
systems or purchase complete systems, including sensors,
aircraft, and mission planning and data analysis software,
tailored to applications. A recent review of UAS remote
sensing systems in environmental biology found that
publication rates from studies using this technology increased
10 fold between 2000 and 2018 with most of the increase
occurring since 2011 (Nowak et al., 2018).

Compact hyperspectral imaging sensors appropriate for small
UAV operations are a fairly recent development, starting in the
2010 time frame based on published reports. Advances in
gimbaling systems have allowed for better image quality to
minimize artifacts from pitch and roll of the drone and
vibrations (Wu et al., 2019). UAV flight lines and scanning
geometries can also be oriented to optimize retrievals (e.g.,
avoid Sun glint) and their range can be greatly expanded by
launching from ships. Because of cloud cover and orbital
constraints, the temporal resolution from satellites is often not
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sufficient to track episodic events like harmful algal blooms
(HABs) compared to a drone that can be deployed in a rapid
response during an outbreak. Imagery from UAS can provide
details at the centimeter scale and temporal frequencies at the
hourly scale with relatively low costs. Moreover, the technology
can be closely synchronized with water sampling in order to
characterize phytoplankton types and quantify the
concentrations of cells and toxins (Wu et al., 2019).

Much of the excellent work undertaken in the early 2000s with
autonomous field spectrometers can now be expanded using
spectrometers from UAS. Where early work focused on
spectral characteristics of marine and aquatic features at very
high temporal scales at a single point scale from moorings
(Dickey and Chang, 2002) it is possible to now include similar
spectrometers on a UAS payload, rapidly capturing thousands of
point-based spectroscopic measurements traversing large areas at
very low cost from small off the shelf platforms (Cornet and
Joyce, in review). For more advanced solutions, imaging
technology over broader scales allows researchers to explore
spatial and temporal dynamics in even greater detail. UAS
have become a popular tool for monitoring the emergence and
extent of intense phytoplankton blooms, particularly those that
are considered HABs (Becker et al., 2019; Wu et al., 2019). For
example, drone imagery, coupled with satellite technology, was
used to effectively detect, forecast, and manage the green tides in
South Yellow Sea, China (Xu et al., 2017). Researchers also used a
drone to track and quantify an intense phytoplankton bloom in
Weitou Bay in the western Taiwan Strait (Shang et al., 2017).
Similarly, several studies have used RGB imagery from drones to
map intertidal coral reefs (Murfitt et al., 2017; Muslim et al.,
2019). Application of hyperspectral UAS for aquatic
environments, including water quality (Zeng et al., 2017),
HABs (Becker et al., 2019), shallow water benthic mapping
(Parsons et al., 2018), and marine fauna surveys (Colefax
et al., 2018).

Deriving quantitative estimates of reflectance can be
particularly challenging from UAVs, particularly under glint
or variable cloud cover when the downwelling irradiance at
the sea surface can be quite different from that measured at
the drone. Shang et al. (2017) provide an innovative method to
calibrate the signal and derive hyperspectral water-leaving
reflectance from drones. Joyce et al. (2019) provide data
collection workflows for planning UAS campaigns to ensure
that necessary pre-planning and safety steps are considered, as
well as requirements including licensing, data processing and
logistical considerations. As noted further in Section 8, we are on
the cusp of achieving significant advances in hyperspectral
remote sensing across the aquatic landscape or “aquascape”.

Autonomous Floating and Underwater Sampling
The availability of high quality in situ observations suitable for
remote sensing algorithm development and product validation is
key to any quantitative remote sensing activity. Unfortunately,
coastal and inland aquatic systems are notoriously difficult to
sample, especially in coordination with airborne or spaceborne
remote sensing. Water constituent concentration and bottom
depth vary across a wide range in temporal and spatial scale.

Correlation scales of water and benthic properties are typically
<10 m and often less than 1 m and traditional ship-based
operations are limited and often prohibited by shallow
bathymetry. Thus, there are significant challenges resulting
from inadequate in situ knowledge that currently limits
progress in any application of remote sensing to coastal and
inland aquatic problems, regardless of sensor configuration. To
address these issues, researchers have begun exploring
autonomous methods of collecting in situ observations.
Autonomous platforms, primarily underwater versions, have
been in development for several decades and have focused on
bathymetry, chlorophyll, and water physical properties associated
with optically deep water (Moline et al., 2005; Ryan et al., 2010;
Johnsen et al., 2013). More recently, attention has turned to
instrumented surface systems designed to support
interdisciplinary applications of hyperspectral remote sensing
operations in shallow coastal environments (Ackleson et al.,
2017).

LOOKING UNDER THE HOOD

Hyperspectral imagery is generated in a “Datacube” with spatial
dimensions in theX and Y axis and wavelength as the Z axis.With
>100 bands, hyperspectral images are notoriously large files that
can be challenging to download and process with some of the
traditional software tools employed in multi-spectral remote
sensing. For example, 12 flight lines from the PRISM airborne
sensor covering 100 km2 of Elkhorn Slough, California and two
long flight lines out 40 km into Monterey Bay, California
provided over 400 GB of raw imagery (Heupel et al., 2013).
Similarly, 16 flightlines covering 250 km2 of a wetland near
Sacramento, California collected by a UAS-mounted Headwall
Nano-Hyperspec pushbroom sensor provided roughly 40 GB of
raw imagery (Bolch et al., 2020). An entire image cannot be fully
loaded into a typical computer memory and the image must be
treated as data tiles, either spectrally or spatially, such that only a
subset of bands or pixels are loaded into memory at one time. For
rendering, an RGB representation of the image is often shown
where a single red, green and blue wavelength is selected to mimic
the human eye as a pseudo-true color. For image processing,
spatial subsets are processed sequentially with some overlap
typically required for certain functions. Software has been
developed and optimized for processing such large imagery
and automatically conducting data tiling spatially or spectrally
as needed for the user (Table 2).

Computational power, data storage and I/O bottlenecks have
been frequent limitations of using hyperspectral data given the
large volume of data. Hence, many of the early studies reduce the
dimensionality of hyperspectral imagery to a few multi-spectral
bands for simple estimates of chlorophyll a and suspended
particulate matter. As high-performance computing and easy-
to-implement parallel processing workflows have proliferated,
increasing data volumes with increasing hyperspectral datasets
and the associated challenges remain lock-step with computing
advances. Data reduction is also common because of the limited
amount of hyperspectral datasets coupled with biogeochemical
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information for algorithm development and validation (Dierssen
et al., 2020). In addition, many approaches are not repeatable
because the imagery has not been adequately corrected for
atmospheric absorption and scattering and sea surface
reflections. In the following sections, we discuss some of the
approaches that have been used for atmospheric correction and
processing hyperspectral imagery.

FINDING THE OCEAN NEEDLE IN THE
ATMOSPHERIC HAYSTACK

Water bodies are typically much darker than the land or
atmosphere above and pulling out the signal that represents
the color of the water is extremely challenging. Except in
highly turbid waters, the water signal is only a few percent in
the pool of photons that reaches a spaceborne sensor. The term
“Atmospheric correction” refers to the techniques used to adjust
at-sensor radiance on airborne and spaceborne platforms for

atmospheric effects, though typically includes compensation for
solar irradiance, water surface effects and directional dependency
of the water leaving signal (Mobley et al., 2016; Frouin et al.,
2019). Particular challenges for atmospheric correction include
absorbing aerosols, clouds, adjacency effects and identifying
when there is interference from bottom reflection (Brando
et al., 2009). Atmospheric correction routines consider the
absorption properties of atmospheric gases, as well as light
scattered within the atmosphere and reflected from the water
surface and/or whitecaps. Such approaches can be extra
challenging for hyperspectral imagery that includes spectral
regions where atmospheric gases absorb and aquatic
ecosystems with high particle loads that scatter light in the
near infrared parts of the spectrum. Hyperspectral imagery
from the ultraviolet to near infrared also holds the promise of
improving upon atmospheric correction, particularly for
estimating absorbing aerosols (Frouin et al., 2019).

Because contributions of diffuse and direct sunlight are
variable and sea surfaces are not flat, removal of reflected light

TABLE 2 | Software available for hyperspectral data processing.

Name Website and Description Interface Publication

Free
ASFit https://github.com/darioomanovic/ASFit

An all-inclusive tool for analysis of UV–Visible spectra of colored dissolved
organic matter (CDOM)

Standalone (GUI) Omanovic et al. (2019)

EnMAP-Box https://enmap-box.readthedocs.io/en/latest/#
Developed for viewing and processing hyperspectral remote sensing
imagery

Plugin for QGIS, GUI and
CLI (python)

Hylatis https://github.com/lasp/hylatis
Cloud-based hyperspectral image analysis toolkit

Cloud-based Wilson et al. (2018)

HyTools https://github.com/EnSpec/HyTools-sandbox
Contribution of files used to load and process hyperspectral imagery

Python library

Hyperspectral Image Analysis
Toolbox (HIAT)

http://www.censsis.neu.edu/software/hyperspectral/hyperspectral.html
Collection of files for processing hyperspectral data

Matlab library Velez-Reyes (2015)

Multi Endmember Spectral
Mixture Analysis (MESMA)

https://mesma.readthedocs.io/en/latest/
Processing, post-processing and visualization of MESMA results.

Python library and plugin
for QGIS

Crabbé et al. (2020)

R packages for raster data (e.g.,
stars and raster)

https://github.com/r-spatial/stars
https://github.com/rspatial/raster
Representation classes for raster data in R, vizualization and analysis tools

R Libraries

SCIATRAN https://www.iup.uni-bremen.de/sciatran/
Coupled ocean atmosphere radiative transfer model.

Standalone (CLI) Rozanov et al. (2014),
Rozanov et al. (2017)

Spectral Library Tool https://spectral-libraries.readthedocs.io
Creates spectral libraries interactively from an image and manages the
metadata

Python library and plugin
for QGIS

Spectral Python http://www.spectralpython.net/ Python library
Water Color Simulator and
WASI-2D

https://c.1und1.de/@519891561215951357/6PlmFxS0RAyf4FLNjVot4A
Radiative transfer and semi-analytical inversion software for aquatic
applications

Standalone (GUI) Gege (2015)

BigDataViewer https://imagej.net/BigDataViewer
Visualization and processing for large image data sets

Plugin for Fiji Pietzsch et al. (2015)

For purchase
ENVI Image Analysis https://www.harris.com/solution/envi Standalone (GUI)
Hydrolight Radiative Transfer https://www.sequoiasci.com/product/hydrolight/

Evaluate how different absorbers and scatterers influence light fields in the
water column

Standalone (GUI and CLI) Mobley (1994)

EPINA Image Lab http://www.imagelab.at/en_home.html Standalone (GUI)
Trimble eCognition https://geospatial.trimble.com/products-and-solutions/ecognition

Image segmentation and feature extraction
Standalone (GUI)

Other resources
IOCCG https://ioccg.org/resources/software/ Several

CLI � Command Line Interface; GUI � Graphical User Interface.
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off the sea surface is challenging for both field and remotely
sensed measurements. Ideally, missions tend to minimize Sun
glint by optimizing viewing geometry and mission scheduling,
which may involve designing spaceborne sensors with pre-
defined oblique viewing angles and orbital dynamics that
result in mid-morning or mid-afternoon overpasses (Hovis
et al., 1980). For aircraft operations, flight planning may
include avoidance of observations made close to local noon
and flight paths that are oriented into or out of the solar
direction to avoid cross-track illumination. There is also a
need to account for glitter that exists as whole pixels
(Lavender and Nagur, 2002). Regardless of sensor design, Sun
glint, adjacency effects, and whitecaps can limit the utility of data
even with the most advanced correction routines.

Some of the more common approaches applied to multi-
spectral and hyperspectral imagery over aquatic water bodies
are provided as a resource (Table 3), in addition to a review of
hyperspectral atmospheric correction approaches (Gao et al.,
2009). However, we also note that historically the atmosphere
has been treated as a prior step to ocean techniques, but advanced
methods for coupled ocean-atmosphere retrievals are an area of
growth in the future (Stamnes, 2003; Jamet et al., 2005; Kuchinke
et al., 2009; Steinmetz et al., 2011; Stamnes et al., 2018).
Hyperspectral atmospheric correction routines include those
that use simulated water leaving reflectance shapes and
retrieve spectra based on some type of a priori spectral library
(Steinmetz et al., 2011; Thompson et al., 2019). Others attempt to
independently retrieve the water and atmospheric properties and
only “lightly constrain” the water-leaving spectral reflectance
(Lavender and Nagur, 2002; Ibrahim et al., 2018;
Vanhellemont, 2019). Most approaches retrieve all
components on a pixel-by-pixel basis, but some are optimized
to use features in the imagery to help constrain one or more
parameter in the solution for the entire scene under investigation

(Guanter et al., 2010; Vanhellemont, 2019). Hence, different
techniques can be used for imagery collected close to land or
within land compared to open ocean. Another problem is the
influence of reflectance from adjacent land/ice pixels that can be
scattered into the field of view of the sensor and “contaminate”
the water signal with often brighter and spectrally disparate
material. This adjacency is particularly problematic for water
near bright ice surfaces and inland waters surrounded by bright
land and vegetation, and can interfere with techniques to
atmospherically correct for aerosols and other imagery.
Various techniques have been proposed for addressing
adjacency (Reinersman and Carder, 1995; Santer and
Schmechtig, 2000; Sterckx et al., 2011; Bulgarelli and Zibordi,
2018), but challenges occur in making the approach applicable
across all diverse landscapes. New approaches have also been
proposed for dealing with pixels containing whitecaps and foam
(Dierssen, 2019). Finally, as further highlighted below, inverse
methods that simultaneously retrieve parameters from a coupled
ocean and atmosphere system without individual atmospheric
correction routines are becoming more common (Chomko et al.,
2003; Stamnes, 2003).

COOKING UP AN ALGORITHM STORM

The number of unknown parameters that can be retrieved from
hyperspectral data will be much less than the number of spectral
bands because of the correlated information between wavebands
(Dekker et al., 2018). Therefore, hyperspectral data may be most
diagnostic for environmental conditions that result in
independent variation of the different optically active
constituents, or to collections of environments (regional or
global scope) each with its own correlation structure. Those
can include systems with surface blooms of different algal

TABLE 3 | Atmospheric correction approaches for aquatic applications.

Name Website Citations

ACOLITE Standalone multi-spectral imagery but with prototype support for hyperspectral sensors
https://github.com/acolite/acolite

Vanhellemont (2019)

ACORN Commercially software that uses MODTRAN4 Gao et al. (2009)
ATREM Used for airborne imagery.

https://www.researchgate.net/publication/268979253_Atmospheric_Removal_Program_ATREM_Users_Guide_
Version_30

Thompson et al. (2015)

CASIDAS Initially developed for CASI and then applied to various hyperspectral and multispectral sensors Lavender and Nagur (2002)
Lavender (2014)

COCHISE Hyperspectral data in the VNIR-SWIR (shortwave infrared) wavelengths Boucher et al. (2002)
FLAASH Plugin to ENVI processing software

https://www.harrisgeospatial.com/docs/FLAASH.html
Cooley et al. (2002)

HATCH Hyperspectral data in the visible and SWIR wavelengths Qu et al. (2003)
iCOR Plugin available in the SNAP toolbox

https://remotesensing.vito.be/case/icor
De Keukelaere (2018)

ISOFIT Python. Simultaneous fitting of surface, atmosphere and instrument models to imaging spectrometer data
https://github.com/isofit/isofit

Thompson et al. (2019)

POLYMER Standalone used to process multi-sensor multi-spectral ocean color imagery
http://hygeos.com/polymer

Steinmetz et al. (2011)

SCAPE-M Plugin for SNAP designed for inland water bodies surrounded by land
https://github.com/senbox-org/s3tbx-scape-m

Guanter et al. (2010)

SeaDAS-
hyperspectral

Plugin for NASA SeaDAS to process HICO and future PACE imagery
https://seadas.gsfc.nasa.gov/

Ibrahim et al. (2018)
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TABLE 4 | Hyperspectral aquatic optical and biodiversity databases.

Dataset Source Description

Field and culture data
Casey et al. (2020). Earth System Science Data, 12 (2), 1,123–1,139.
https://doi.org/10.5194/essd-12-1123-2020.
https://doi.pangaea.de/10.1594/PANGAEA.902230

Field, Global A global compilation of in situ aquatic high spectral resolution inherent and
apparent optical property data for remote sensing applications

LIMNADES
https://limnades.stir.ac.uk

Field, Global Lake bio-optical measurements and matchup data for remote sensing

Carpenter, Dierssen, Hochberg, Lee. 2014–2017. The Coral Reef
Airborne Laboratory (CORAL) database.
https://doi.org/10.5067/SeaBASS/CORAL/DATA001
https://airbornescience.jpl.nasa.gov/campaign/coral

Field, Pacific Reefs In situ IOP and AOP data collected over Pacific coral reefs in conjunction
with PRISM hyperspectral imagery

Knaeps et al. (2018). The SeaSWIR dataset.
https://doi.org/10.1594/PANGAEA.886287

Field, Regional Hyperspectral marine reflectances, total suspended matter, and turbidity
measurements gathered at three turbid estuarine sites

Behrenfeld et al., 2014–2017. North American Aerosol and Marine
Ecosystem Study (NAAMES).
https://doi.org/10.5067/SeaBASS/NAAMES/DATA001

Field, North
Atlantic

Four cruises in North Atlantic with AOPs, IOPs, associated with
phytoplankton and aerosol data

Siegel et al. 2018–2020. Ocean EXPORTS
https://doi.org/10.5067/SeaBASS/EXPORTS/DATA001

Field, Pacific and
Atlantic

Data on export and fate of upper ocean net primary production coupled to
IOP and AOP measurements

Marine Biodiversity Observation Network (MBON) data portal.
https://mbon.ioos.us/

Field, Regional Biodiversity time series of flora and fauna along coastal zones with ancillary
data

Mortelmans et al. (2019). Lifewatch Flanders Marine Institute
observatory data. In prep for reflectance
https://doi.org/10.14284/393

Field, Coastal
North Sea

Monthly phytoplankton pigment, suspended matter, turbidity, and
recently hyperspectral radiometry

Vanderwoude et al. (2020). NOAA GLERL Great Lakes Harmful Algal
Bloom database. In prep. remove link

Field, Great Lakes Monthly sampling of Great Lakes phytoplankton composition and
hyperspectral optics

Bracher et al. (2020). Coupled phytoplankton composition and
radiometry from Atlantic Ocean.
https://doi.org/10.1594/PANGAEA.913536

Field, Atlantic Phytoplankton pigment concentration, groups, and radiometric
measurements in the Atlantic Ocean

Bagniewski, W. et al. (2011). North Atlantic Bloom Experiment 2008.
https://www.bco-dmo.org/project/2098

Field, Atlantic Phytoplankton dynamics, profiled hyperspectral reflectance with
autonomous optical backscatter, attenuation, radiance

Dekker, Anstee, in prep. Digital Earth Australia. Australian shallow
waters spectral library
https://ozcoasts.org.au/management/library/

Field, Australia Spectral library repository for aquatic ecosystem substratum and
substratum cover types

Clementson and Wojtasiewicz (2019a)
Australian national algae culture collection
https://doi.org/10.1016/j.dib.2019.103875

Standards Dataset on the absorption characteristics of extracted phytoplankton
pigments

Clementson and Wojtasiewicz (2019b)
Australian national algae culture collection
https://doi.org/10.1016/j.dib.2019.104020

Culture Dataset on the in vivo absorption characteristics and pigment composition
of various phytoplankton species

Voss et al. (2017)
NOAA marine optical buoy (MOBY)
https://www.star.nesdis.noaa.gov/socd/moby/filtered_spec/

Field, Hawaii Hyperspectral water-leaving reflectance in clear waters

Joyce, K. 2020. Shared drone spectroscopy
https://www.geonadir.com/

Field, Global Public repository for drone data including hyperspectral datasets

Simulated and derived data
Craig et al. (2020). National Aeronautics and Space Administration,
PANGAEA,
https://doi.org/10.1594/PANGAEA.915747

Simulated, Global Top of atmosphere, hyperspectral synthetic dataset for PACE ocean color
algorithm development

Gregg and Rousseaux (2017). Simulating PACE global ocean
radiances. Frontiers in Marine Science, 4.
https://doi.org/10.3389/fmars.2017.00060

Simulated, Global Dynamic simulation of global water-leaving radiances at 1 nm spectral
resolution using an ocean model containing multiple ocean phytoplankton
groupsetc.

Bracher et al. (2017). Phytoplankton composition from 2002–2012
in world ocean
https://doi.org/10.1594/PANGAEA.870486

Derived, Global Global monthly mean surface chlorophyll a for diatoms, coccolithophores
and cyanobacteria from SCIAMACHY data

(Continued on following page)
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communities that present unique absorption and scattering
properties, and water masses that are potentially influenced by
land processes (e.g., erosion, organic leaching), benthic-pelagic
coupling (e.g., tidal and/or wind driven resuspension of
sediments), and flocculation driven by time-space dependent
turbulence and chemistry (estuaries). Much of the information
content studies have been done with simulated data that may not
fully represent the inherent optical properties of natural systems
and do not typically model inelastic processes such as Raman
scattering and fluorescence (Lee et al., 2007; Wolanin et al., 2016),
polarization (Harmel, 2016) and directional dependency,
particularly for three-dimensional benthic structures (Hedley
et al., 2017, 2018). Presently, there is a lack of hyperspectral
backscattering data for different types of aquatic particles for
use in simulations. Therefore, optical closure between models
(Werdell et al., 2018) and measurement techniques is challenging
in bloom conditions and complex water types. To aid in algorithm
development, we have compiled a list of hyperspectral datasets
that may be useful for evaluating different approaches for
estimating aquatic parameters, including phytoplankton and
benthic community composition (Table 4). With more
hyperspectral field data across a wide variety of conditions
(Dierssen et al., 2020), particularly for applications for inland
and coastal waters, we may find potentially new information in
parts of the spectrum previously overlooked. Even without this
further information, hyperspectral data will help reduce the
uncertainty in the retrieved parameters (Werdell et al., 2018).

Blondeau-Patissier et al. (2014) provide a detailed description of
many common indices and numerical techniques used in multi-
spectral ocean color remote sensing. Amore recent review of ocean
color methods for quantifying the inherent optical properties
(IOPs) grouped algorithmic approaches into three broad
categories; empirical, semi-analytical (also referred to as quasi-
analytical), and spectral libraries (also referred to as look-up tables)
(Werdell et al., 2018). However, we believe that a more general
framework is possible to unify approaches and reduce community-
specific jargon with modern terminology of computer and data
science. Empirical relations are inevitably introduced in our
methods because purely analytical approaches are not possible
from remote sensing above the water surface due to complete
internal reflection which limits the angular distribution of light
crossing the air-sea interface and lack of information on the
vertical distribution of particles (Zaneveld, 1995). More
information is available from sensors simultaneously measuring
at multiple angles from a sea surface. Still, such signals can be
challenging to interpret given variable path lengths through the

atmosphere and the ever-changing nature of sea surfaces with non-
random distributions of waves and swells. Ocean color sensors
typically have a small solid angle of detection and measure light
fields that originated from near-nadir directions (upwards) within
the water (McClain, 2009).

Rather than merely list algorithms, we step back and consider
the fundamentals of developing an algorithm with independent
steps of “Data Transformations” and “Retrieval Algorithms.” This
grouping is done because many of the techniques are often
identified with the name of the numerical transformation (e.g.,
derivatives, principal components). Still, the parameters of interest
are identified through statistical techniques like multiple linear
regression. Many of the so-called “Semi-analytical” algorithms fall
within the broader category of “Spectra as References,” where the
remote sensed spectrum is used as a reference that is matched to
spectra modeled using approximations of the forward radiative
transfer equations and spectral shape functions. Some algorithms
are less sensitive to uncertainties in atmospheric correction such as
those focused on narrowband features, and others may require
highly calibrated data across the spectrum.While uncertainties can
be quantified directly with some techniques, like so-called Optimal
Estimation (Rodgers, 1998), techniques have been proposed for
propagating uncertainties through other types of algorithms
(McKinna et al., 2019).

FIGURE 2 | A pairwise correlation analysis can provide information on
narrowband features that may be related to a parameter of interest. (Modified
from Dierssen et al. (2015)).

TABLE 4 | (Continued) Hyperspectral aquatic optical and biodiversity databases.

Dataset Source Description

General searchable databases
OBIS: https://obis.org/
SPECCHIO: https://specchio.ch/
PANGAEA: https://www.pangaea.de/
SEABASS: https://seabass.gsfc.nasa.gov/
BCO-DMO: https://www.bco-dmo.org/
SPECLIB: https://speclib.jpl.nasa.gov/

Field, Global
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Data Transformations
Data transformations are performed to amplify spectral signals
that are related to the specific components to be retrieved.
Sometimes the transformed data becomes the parameter of
interest, such as the normalized fluorescence line height or
normalized difference vegetation index (NDVI). Still, often the
transformed data is then related to a parameter of interest via
other solution methods as outlined in Retrieval Algorithms below.
In the latter case, transformations are conducted prior to retrieval
of the parameter of interest. The most fundamental
transformation applied in remote sensing is the normalization
of the measured radiance by the estimated downwelling
irradiance to remove variations induced by the quantity and
quality of the incident light field, increasing the correlation of the
measured signal across multiple conditions with the system
properties of interest. After this transformation to reflectance,
several methods are applied to amplify the signal further. Listed
below are some of the most common transformations, such as
normalization of the signal magnitude, reflectance line heights,
spectral derivatives, and coordinate system transformation.

Band Math
The simplest transformations are conducted by applying a
common mathematical operation or function to the reflectance
spectrum. One classical example typically used in multispectral
algorithms is to conduct a ratio of two different bands to evaluate
relative differences rather than the absolute magnitude (Dierssen,
2010). Similarly, the normalized difference index (NDI), a
generalized version of the NDVI, is calculated as the difference
between two bands normalized by the sum of the two bands (Hu
and Feng, 2016). A common transformation conducted in
hyperspectral analyses is to normalize all bands to a given
band, approximately removing the dominance of magnitude
differences over the signal, enhancing the relative spectral
differences. A similar effect can be achieved by normalizing
the spectra to its spectral integral (Spyrakos et al., 2018).

Hyperspectral data are particularly suited for investigating
absorption and fluorescence features that appear as local
minima and maxima in the reflectance spectrum. Such feature-
centric algorithms are mathematically simple and work well when

the feature of interest covers a narrow spectral range and dominates
the reflectance spectrum. Narrow-band analyses are generally less
sensitive to uncertainties in the atmospheric correction. A common
method for finding such narrowband features is to produce a
correlationmatrix quantifying the relationships between the feature
of interest and all pairs of wavebands across the spectrum. For
example, such an approach was used to assess the age of floating
seagrass wrack using a narrowband water absorption feature at
750 nm (Figure 2) (Dierssen et al., 2015).

Line heights (LH) can be calculated following from a
continuum formed by the line between bands (B1 and B3)
surrounding the spectral feature of interest (B2) following:

LH �
∣
∣
∣
∣
∣
∣
∣
∣

(λB2 − λB1)(RB3 − RB1)
(λB3 − λB1) + RB1 − RB2

∣
∣
∣
∣
∣
∣
∣
∣

.

Using widely spacedmultispectral data for line heights, such as
in the NASA normalized fluorescence line height algorithm (nflh)
(Behrenfeld et al., 2009), can be problematic because the selected
bands may not be isolated around the feature of interest. The nflh
algorithm, for example, uses 748 nm for Band 3, which is over
60 nm away from the fluorescence peak. Such a distant anchor
point works reasonably well for average Chlorophyll waters
(Figure 3A), but produces an order of magnitude higher nflh
under high suspended sediment load with no fluorescence peak
(Figure 3B) (e.g., Zhao and Ghedira, 2014; Amin and Shulman,
2015).

Hyperspectral line heights have been used to detect specific
accessory pigments like Chlorophyll-c3 at 467 nm (Astoreca et al.,
2008). Variations on line heights and shifting peak wavelengths
can also untangle the complexities of fluorescence in coastal
waters where scattered light (elastic reflectance) significantly
influences the fluorescence band (Gilerson et al., 2007) and for
some types of bloom or seasons when fluorescence is not as
prevalent as scattering enhancements observed in the far red
wavelengths, also referred to as the “red edge” (Gower et al., 2008;
Matthews et al., 2012; Freitas and Dierssen, 2019). Additionally,
hyperspectral data can also reveal different fluorescence peaks
such as the yellow fluorescence observed from phycoerythrin
pigment in the ciliateMesodinium rubrum (Dierssen et al., 2015).

FIGURE 3 | Narrowband features like chlorophyll fluorescence can be inaccurately estimated when using multi-spectral bands that are distant from the feature,
such as the blue bands used in the normalized fluorescence line height (nflh). Examples of (A) water-leaving Reflectance (Rw) spectrum with a typical chlorophyll
fluorescence feature and (B) a spectrum representative of high sediment water with no observable chlorophyll fluorescence leads to an erroneously high nflh.
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Derivative Analysis
Spectral derivatives solved as finite difference derivative
approximations (e.g., Torrecilla et al., 2011) can reduce
relative magnitudes variation in the spectrum, enhancing the
signal of the presence of local minima and maxima. Spectral
derivatives have long been used to evaluate phytoplankton
pigments such that a trough in reflectance is related to
absorption and a peak in reflectance associated with reduced
of absorption or pigment fluorescence. Since the second
derivative is a measure of curvature, it amplifies high-
frequency features of interest that are otherwise quite subtle
within the spectrum and depresses low-frequency changes,
such as the gradual decrease in absorption due to colored
dissolved and detrital matter. However, this also means that
very high-frequency features, such as band-to-band differences
due to sensor noise and relative calibration errors, will also be
amplified within the derivative spectrum. For this reason, spectral
smoothing is often conducted before the application of derivative
analysis, and various techniques have been recommended for
how to smooth data for effective derivative analysis. Often, a
statistical approach like multiple linear regression or optimization
is then used to link the derivative spectrum to the parameters of
interest, but decision trees based on arguments of themaxima and
minima (argmax and argmin) have also been used (Lubac et al.,
2008). Application of derivative analysis to aquatic remote
sensing data has been useful for detecting the presence of
pigments associated with phytoplankton including harmful
species (Bidigare et al., 1989; Craig et al., 2006; Lubac et al.,
2008; Cheng et al., 2013) and benthic organisms associated with

shallow coral reef habitats (Hochberg and Atkinson, 2000;
Louchard et al., 2003).

Coordinate Transformations
Transformations of the coordinate system are typically used to
produce a set of orthogonal variables with uneven distribution of
the total variance, as in classical Principal Components Analysis
(a.k.a., Empirical Orthogonal Functions). The new variables can
be used as a descriptive multivariate method of the optical data, in
which case further transformations of the variables might be
relevant for interpretation (e.g., varimax PCA). They can also be
used for prediction in methods that condition the rotation in the
optical data matrix to achieve an improved classification of (e.g.,
Linear Discriminant Analysis) or correlation with the dependent
variable (e.g., Partial Least Squares Regression). In its simplest
application for retrievals, the coordinate transformation with
PCA is an isolated step after which the new variables are
included in multilinear regression. Preisendorfer also provided
a fundamental text on PCA (Preisendorfer, 1988). These
approaches are increasingly being used to identify different
groups of phytoplankton and suspended mineral composition
(Catlett and Siegel, 2018; Ortiz et al., 2019; Bracher et al., 2020a;
Smith and Bernard, 2020). A related concept is the
transformation of the hyperspectral information to
chromaticity coordinates (hue angle and saturation).

Retrieval Algorithms
A wide variety of hyperspectral methodologies rely on machine
learning techniques across the broad field of environmental science,
as detailed in extensive reviews over the last decade (reviewed in
Paoletti et al., 2019). The basis of most algorithms is considered
within the framework of machine learning, where statistics theory is
used to find patterns in data or to estimate the process that generates
the data. In the first case, methods fall in the class of unsupervized
machine learning with cluster analysis and other methods that also
take in consideration the spatial context, as in object based image
analysis. In the latter case, methods are either in the context of
supervised machine learning, spectral matching or linear matrix
inversion. Within this group, a variety of approaches are used to
related a spectrum, either measured at-sensor, atmospherically
corrected (Finding the Ocean Needle in the Atmospheric
Haystack), or subject to one or more transformations (Data
Transformations), to a parameter or set of parameters of interest.
Parameters can include classes of optical water types, optical
properties including absorption and backscattering, and
biogeochemical quantities of interest like pigment or sediment
concentrations. Clearly, the more representative the training data
available across space and time, the better the models will perform
across the domain. The field of machine learning is advancing
rapidly and influencing the way nearly all algorithms are developed,
tested, and implemented. Some approaches are focused more on
prediction rather than understanding or description of processes,
and many final algorithms involve multiple steps including data
transformations and statistical analyses. Here, we group the retrieval
approaches by the way the spectra are used in the algorithm
(Figure 4).

FIGURE 4 | Approaches for building a hyperspectral algorithm with
selected examples.
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Spectra as Descriptors
The following section highlights some of the common methods
where spectra are used to estimate indices or categories.

Optical Indices
In addition to various band math indices like normalized
fluorescence line height discussed above in Data Transformations,
many different other types of indices have been proposed to detect
differences between floating Sargassum and seagrass wrack
(Dierssen et al., 2015) or to detect different harmful algal bloom
formers (Smith and Bernard, 2020). A spectral classification index
was recently developed by Vandermuelen et al. (2020) to
quantitatively describe the shape of a hyperspectral dataset using
a weighted harmonic mean. Similar to transformations of
hyperspectral data to chromaticity coordinates that relate to
colors observed by the human eye (Dierssen et al., 2006;
Wernand et al., 2013), the Apparent Visible Wavelength (AVW)
represents a one-dimensional geophysical metric of “color” that is
correlated to spectral shape. Such simple metrics correspond to
conceptual changes that can easily be explained to a broad audience
(e.g., the water is “greener” or “bluer”) and can be diagnostic of slight
optical changes that are masked in chlorophyll retrievals.

Cluster Analysis
Many different indices have been developed to classify water types
broadly from clear to turbid similar to the original water classes of
Jerlov (1963) or to identify specific types of algal blooms or
properties of interest. Clustering methods are frequently used
to partition out different types of spectra locally or globally and
track water mass movement and change over time (Lubac and
Loisel, 2007; Aurin et al., 2010; Uitz et al., 2015; Ye et al., 2016).
Clustering methods can include K-means, fuzzy C-means,
hierarchical clustering (e.g., Euclidean distance, Ward linkage),
and hybrid methods. Classification approaches in the pelagic
ocean (i.e., “Seascapes”) have been used to identify water
masses with particular biogeochemical features that can be
linked to biomes and biophysical provinces and provide rapid
information to decision-makers about the changing
environmental conditions (Kavanaugh et al., 2016). Seascapes
are classified using a suite of synoptic time-series observations
from satellites (Montes et al., 2020).

Object Based Image Analysis
Traditional pixel-based image classification considers all pixels
similarly without the context of neighboring pixels or the image
as a whole. However, OBIA segments an image and groups pixels
together into vector objects (Blaschke, 2010). Such approaches are
not common to ocean optics given the relative homogeneity of
ocean surfaces and the lack of structures like rectangular
buildings and long and narrow roads. However, these
techniques are gaining popularity in optically shallow water
remote sensing where bottom features may have spatial
patterns and features (Phinn et al., 2012; Roelfsema et al.,
2018). A variety of methods are available to segment an image
based on the shape and spectral information prior to classification
(Table 2). This can also prevent unwanted salt and pepper
retrievals where classes vary unrealistically within an aquascape.

Spectra as Predictors
The following section presents example techniques where the
spectra or the transformed spectra are used as independent
variables to predict parameters of the system. Prediction
requires the supervised approach to machine learning and
comprises methods of classification and regression analysis.
The term “classification” is used when the dependent variable
is categorical and the term “regression” is used when the it is
continuous. Most familiar methods are those of parametric
regression using linear or non-linear models, but
nonparametric models such as artificial neural networks are
gaining popularity. Below we present an overview of some
common methods.

Parametric Regression
Parametric regression imposes a structure to the modeled
relationship between spectral data and a continuous target
parameter. This requires specifying the relationship structure a
priori, from dedicated exploratory data analysis. For complex data
relations, it demands sophistication in terms of mathematical
functions and orthogonal basis expansions. A benefit of this
approach is that it is data-efficient and can be applied to
sparsely populated sample space. As a contrast, nonparametric
regression does not impose a model structure and often requires a
more densely populated sample space. As discussed above, data is
often transformed first and then linked to a parameter of interest
using linear or nonlinear regression techniques. This type of
approach has been used for the current band ratio chlorophyll a
algorithms and for other parameters like ancillary pigments,
phytoplankton groups, and total suspended matter (Catlett
and Siegel, 2018; Ortiz et al., 2019; Bracher et al., 2020; Smith
and Bernard, 2020). For many aquatic parameters, the regression
analysis is conducted on log-transformed data to cover the full
range of environmental conditions.

Neural Networks
Recently, Artificial Neural Networks have gained much
popularity due to their flexibility in addressing different
applications and can be used with raw data or applied after
data transformations. Training data sets may consist of field
measurements or model simulations representing the wide
range of conditions found in the natural world. Researchers
“train” a neural network over time by analyzing its outputs on
different problems and comparing them with the correct answers.
As in any regression, model development must consider trade-
offs between adding complexity to improve prediction and
increasing the risk of overfitting the solution to the training
data. Accumulation of global datasets covering a wide range of
conditions and advances in computer processing power have
enabled machine learning researchers to vastly expand the size
and complexity of the models, simulate larger datasets for
training, train the models faster, and overall achieve better
results. Neural networks have been gaining popularity in the
aquatic remote sensing and used to derive the diffuse attenuation
coefficient (Jamet et al., 2012; Chen et al., 2014), uncouple
constituents in optically complex waters (Doerffer and
Helmut, 2000; Ioannou et al., 2013), map shallow-water
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benthic features (Sandidge and Holyer, 1998; Filippi, 2007; Liu
et al., 2015), and to evaluate features across different scales (e.g.,
Hieronymi et al., 2017; Pahlevan et al., 2020). Salcedo-Sanz and
colleagues, for example, implemented a neural network to map
shallow benthic coral reef features and concluded that neural
network approaches generally out perform traditional empirical
approaches to the problem such as supervised and unsupervized
classification and regression analysis (Salcedo-Sanz et al., 2016).

Decision Trees
In a decision tree, the analysis begins at the top of the tree where a
single feature of the data is considered and analysis proceeds
downwards based on the decisions made in previous levels of the
tree. At each level of the tree, the computation splits off into two
or more children nodes based on features of the data. The
computation ends when you reach a terminal node at the
bottom of the tree. Even in the simplest algorithms, many
decisions are required to assess whether reflectance in a pixel
is appropriate for subsequent analysis. Some of these decisions
may be considered as part of the “Atmospheric Correction”
decisions such as “Is this a water pixel?” or “Is there a cloud or
cloud shadow obscuring the pixel?” or “Is this optically deep
water?” Many common algorithms in ocean color are decision
trees that use different approaches depending on criteria
established from the spectrum, such as NASA’s current
Chlorophyll a algorithm which uses two different algebraic
approaches depending on whether the pixel is considered a
high or low chlorophyll pixel. Such decisions often involve
subjective or fitted thresholds which determine which
approach will be used. Setting thresholds can be challenging,
and such delineation often does not apply widely across different
images collected in space and time and require tuning for each
application. Decision Trees are common for differentiating water
types, benthic flora and floating vegetation (Hill et al., 2014; Ye
et al., 2016; Castagna et al., 2020).

The supervised Random Forest (RF) classifier belongs to the
group of classifiers that use decision trees and independent
random vectors, with the approach driven by the relationship
between the training and the response dataset rather than starting
with a data model (Breiman, 2001). It provides several benefits
over other supervised classification algorithms, including the
ability to calculate internal error estimates and variable
importance, as well as the capacity to handle weak explanatory
variables (Gislason et al., 2006). The approach has received
attention within the remote sensing community due to both
the classification accuracy and processing speed. Applications
include the classification of submerged vegetation (Espel et al.,
2020) and estimation of bathymetric depth (Yunus et al., 2019).

Spectra as References
A different approach to estimation of a continous variable occurs
when the measured spectrum is taken as a reference and the
methods involve calculating the mixing of endmembers or the
system composition that would result in the observed spectrum.
This approach is typically solved numerically with optimization,
where the measured spectra is taken as a reference to be matched
against by spectra in a spectral library. The parameter values of

the best matching spectra are taken as estimates for the
measurement. An analytical solution via linear matrix
inversion is possible in linear problems, such as linear mixing
of endmembers or when using a linear approximation to the
radiative transfer equation. In the latter, the analysis calculates the
magnitudes (eigenvalues) associated with predefined relative
spectral shapes (eigenvectors) of system components that
would result in the observed spectrum.

The spectral library can contain previous measurements in
which the parameters of interest are known, or can be built from
simulation with a physical model. In the case of simulations, the
library can be generated dynamically at each iteration step or
through the use of a static library or “look-up table” of
measurements or pre-computed simulations. Iterative
approaches can be computationally expensive when applied to
each pixel in a remote sensing image. The computational time
involved in searching the library for the best matching spectrum,
however, may also be high given the number of properties that
must be considered, the number of spectral bands, and how each
parameter varies across the expected range. Library size can be
decreased to an extent by limiting the dimensionality of the
hyperspectral signal to regions of the spectrum containing most
of the information pertaining to the properties of interest.
Spectral libraries have been developed and applied to
differentiating phytoplankton groups or biodiversity (Palacios
et al., 2015) and in optically shallow water to retrieve bottom
depth and benthic cover (Louchard et al., 2003; Mobley et al.,
2005).

Many of the so-called “Semi-analytical Models” fall within the
broader category of optimization using a physical model

FIGURE 5 | Physical models link the water column optical properties to the
light field measured by a satellite. (A) Most semi-analytical algorithms use a
simplification where the directional nature of light is approximated with empirical
constants (Werdell et al., 2018). (B)Anewly posed ZTTmodel parameterizes
the shape of light in the backward direction (phase function), the shape of the
upwelling component of path radiance and the average cosine of downwelling light
Twardowski and Tonizzo (2018).
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representative of the system. Such techniques involve: 1) Formulation
of the problem in a forward model; 2) Iterating or inverting the
forward model algebraically or numerically; and 3) Finding the best
solution in terms of uniqueness, accuracy and efficiency of the model.
The formulation of the forward model in aquatic models often relate
inherent optical properties of the water column (typically the
absorption and backscattering properties of the water constituents)
through radiative transfer theory (Gege, 2017). To-date, most of the
aquatic models have used an approximation of the radiative transfer
equation relating the ratio of backscattering to absorption with an
empirical parameter, gi, that accounts for the angular distribution of
incoming and scattered light (Figure 5A) (Gordon and Brown, 1988).
A more detailed formulation of the forward model was recently
proposed, the Zaneveld-Twardowski-Tonizzo (ZTT) Model, that
parameterizes the angular distribution of both incoming and
upwelled light in the water column (Figure 5B) (Twardowski and
Tonizzo, 2018). Angular considerations become more critical when
retrieving optical properties in more complex coastal and inland
waters.

Many different numerical solutions have been used from non-
linear spectral optimization to adaptive linear matrix inversion (e.g.,
see Table 4 of Werdell et al., 2018). Some form of empirically
determined spectral shape functions are required to retrieve the
inherent optical properties of different constituents, including
particulate backscattering and absorption by phytoplankton,
gelbstoff, and depigmented particles. The term “depigmented
particles” is used rather than tripton, detritus or non-algal particles
because the measurement includes all types of depigmented particles,
including algal cells (Neeley et al., 2018). The solution involves varying
the quantities of each parameter until the difference between the
derived and the measured spectrum is sufficiently minimized. Many
solution methods include techniques to avoid local minima and
maxima and sample the whole parameters space (e.g., Dierssen
et al., 2019).

Derived inherent optical properties can then be related to other
parameters of interest such as concentrations of chlorophyll a, total
suspended matter, and potentially estimates of phytoplankton
community composition via supervised regression techniques
discussed above. In addition to the optical properties regularly
produced from ocean color imagery (Lee et al., 2002; Werdell
et al., 2013), similar approaches have also been successfully used in
simultaneously retrieving water column depth, inherent optical
properties and benthic diversity from hyperspectral imagery
(Hedley et al., 2016b; Garcia et al., 2018; Dierssen et al., 2019). A
significant advantage of optimization approaches is that uncertainties
due to instrumental and environmental noise can be estimated
numerically via the addition of spectral noise before inversion
(Garcia et al., 2014).

A class of optimization techniques well suited for hyperspectral
imagery are referred to as “Optimal Estimation” using Bayes’
theorem (Rodgers, 1998). It entails specifying probability
distributions for the natural variability of the hidden physical
processes (“priors”), a distribution for the spectral measurement
errors, and an explicit forward model. Assuming all distributional
parameters are known, the retrieved state is then the maximum a
posteriori (MAP) estimate of the state given the observed, noisy
radiances. Specifying the sources of variability within a Bayesian

framework allows for the parameterization of the sources of error
and the ability to propagate them into estimates of retrieval
uncertainty (Nguyen et al., 2019).

UNLOCKING BIODIVERSITY: NEITHER
FISH NOR FOWL

Biodiversity, the diversity within species, between species, and of
ecosystems, is a fundamental characteristic of Earth, and underpins
the structure and functioning of Earth’s ecosystems, as well as human
health, nutrition, and economic livelihoods (Secretariat of the
Convention on Biological Diversity, 2020). Many of the benefits
that we gain from aquatic ecosystems depend on the number and
abundance of species, the interactions between the organisms and the
environment, and the number of different habitats (Malone et al.,
2014). In recognition of the global threats to biodiversity, the
Convention on Biological Diversity (CBD) has listed several targets
for preserving aquatic biodiversity including: sustainable management
offisheries and aquaculture, prevention of nutrient pollution, aswell as
minimization of anthropogenic pressures on coral reefs and other
vulnerable ecosystems. Measures for biodiversity referred to as
Essential Biodiversity Variables (EBVs) are commonly grouped
into six classes: genetic composition, species populations species
traits, community composition, ecosystem structure, and ecosystem
function. SinceMuller-Karger et al. (2018), more biodiversity variables
for phytoplankton are routinely produced from satellites like Sentinel-
2 OLCI, including pigments (chlorophyll a and phycocyanin) and
certain taxonomic groups like cyanobacteria are routinely produced
from aquatic remote sensing platforms) (Figure 6).

Measurements of distribution, abundance, and phenology of bulk
phytoplankton in the open ocean (i.e., derived chlorophyll-a) are
regularly produced from satellite remote sensing. Parameters that
Muller-Karger et al. (2018) classified as “demonstrated limited cases”
could become operational with regular, hyperspectral observations. In
particular, high spatial and radiometric resolution hyperspectral data is
required with a high repeat frequency would enable measurements of
primary producers such as phytoplankton, wetland and submersed
plant and macroalgae species and distribution (including vertical),
pigments and other traits, taxonomic diversity and functional types
(Santos et al., 2012; Anderson et al., 2016; Santos et al., 2016; Bracher
et al., 2017a; Hedley et al., 2017). Where species cannot be measured
directly, hyperspectral remote sensing can be used to monitor drivers
and proxies of biodiversity. For example, hyperspectral remote sensing
can be used to discriminate the water quality constituents and the
spectral underwater light field of the aquatic environment, which
forms the niche formany fish species. Spectral diversity of the primary
producers in aquatic and wetland ecosystems can be used to make
inferences about biodiversity and ecosystem function (Muller-Karger
et al., 2018; Rebelo et al., 2018). Indeed, monitoring of biodiversity of
benthic and pelagic organisms in aquatic ecosystems will advance
remote sensing capabilities with diverse applications that serve both
the research and management communities (Figure 7).

Spectral “fingerprints” can be used to elucidate different light
absorbing, scattering, and fluorescence properties that are related to
the biodiversity of photosynthesizing flora and fauna in the water
column (pelagic), on the seafloor (benthos), and floating on the sea
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surface. Photosynthesizing flora includes different assemblages of
phytoplankton which provide the bulk of the photosynthesis in the
world ocean, and photosynthesizing fauna includes tropical coral reefs
and select mixotrophic plankton like ciliates. Algorithms for
estimating pigment concentration are usually associated with large
uncertainty when applied globally because of the variability in size and
shape of phytoplankton and cellular levels of pigment related to
environmental conditions (Dierssen et al., 2020). Increasingly studies
show that only a limited number of phytoplankton groups (∼5) may
be differentiated globally using hyperspectral absorption spectra in
visible wavelengths (Kramer and Siegel, 2019). The spectral signatures
of the different phytoplankton groups of interest are similar within the
uncertainty of the measurement largely because of the considerable
overlap in pigment composition between different groups (Cael et al.,
2020). Recent analyses of the oligotrophic ocean from theTaraOceans
expedition, for example, suggests that only around five different
phytoplankton groups can be reliably differentiated from their
spectral signatures (Cael et al., 2020). Data from the Santa Barbara
Channel, California revealed that around five phytoplankton pigment
communities, which are covarying assemblages of phytoplankton
groups, could be differentiated based on their spectral properties
(Catlett and Siegel, 2018). Similarly, data from the upwelling

waters around South Africa also was used to retrieve five different
phytoplankton communities relevant to the aquaculture industry
(Smith and Bernard, 2020). However, remote sensing algorithms
and biogeochemical models can be derived and tuned for the
regional or local phytoplankton groups down to specific taxa, if
they are known to occur in an area. And, we have only begun to
assess the hyperspectral scattering and fluorescence properties that
may also aid in differentiating different types and stages of blooms, as
well as relationships to seasonal trends and other remotely sensed
parameters including polarization parameters, temperature,
photosynthetically available radiation, and salinity.

PEERING INTO THE ABYSS

As the pressures of human population and climate change on coastal
and inland aquatic environments rise, the need will increase for more
accurate and timely environmental information to support research
and resource management. With an economic value to the Asia
Pacific region alone currently estimated at U.S. $372 billion, jumping
to U.S. $1.35 trillion by 2030 (Commonwealth of Australia, 2019)
Earth andmarine observing is emerging as a significant business in its

FIGURE 6 | Current capabilities of remotely sensed data for measuring Essential Biodiversity Variables modified fromMuller-Karger et al. (2018). “Unproven” indicates
that methods have not yet been developed to collect these measurements from remote sensing imagery. “Demonstrated” are methods that have been demonstrated and
could potentially be produced with hyperspectral imagery. “Routine” indicates measurements that are produced regularly. “Ecosystem model” indicates EBVs that can be
predicted on the basis of ecosystem models that may incorporate remote sensing imagery. “NA” indicates that the observation is not applicable.
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own right. Hyperspectral remote sensing, in particular, is becoming a
powerful mapping and survey tool that is well suited for optically
complicated coastal and inland aquatic environments, as well as a host
of other applications of societal importance, such as in areas of
agriculture, mineral exploration, forestry, and urban planning. This
broad scope of application will ensure that hyperspectral technology
and access will continue to improve with time. It is, therefore,
reasonable to speculate how future technological advances may
improve how we sense and understand aquatic environments and
to point out key challenges to overcome in order to capitalize on future
technology (Figures 7).

As noted in Suborbital Systems, sensorminiaturization is one of the
most exciting recent advances in hyperspectral technology for
observing highly heterogeneous benthic environments. We can
now mount small and lightweight imaging spectrometers on drone
platforms to fly at low altitude (Parsons et al., 2018), or within
submersible housings to acquire data with an unparalleled spatial
resolution (Chennu et al., 2017; Mogstad and Johnsen, 2017;
Bongiorno et al., 2018). The combined hyperspectral hyperspatial
data will allow us to revisit the research findings in aquatic andmarine
applications using point-based spectrometers of the early 2000s and
apply it in a new spatially explicit manner, while including context,

shape, size, and textural measures for more detailed classifications.
Further, with the availability of sensors of the caliber that were
previously limited to military or high-end commercial consulting,
data capture is rapidly decentralizing and distributing within an
expanding user community. This expansion of platforms results in
potentiallymanymore data sets available to be analyzed and exploited.

The shift in imaging system access and control from external
organizations and large satellites to the individual researcher with
UAS is analogous to transferring computing power from
mainframes to personal computers in the 1980s. By
embedding the technology within research activities, users
have more flexibility in deciding when, where, and how
frequently to collect observations, thus increasing data value
and, therefore, project efficiency. Users can readily create
custom UAS-based systems, or purchase complete systems
including sensors, aircraft, and mission planning and data
analysis software, tailored to applications (Adão et al., 2017).
This is a careful balance though, as the adoption of UAS systems
often comes at the expense of loss of coverage across large areas
without great investment in personnel time and extremely large
data volumes still not manageable for many individual research
groups or investigators (Bolch et al., 2021).

FIGURE 7 | A host of new applications will be available with better discrimination of pelagic and benthic biodiversity promised by hyperspectral imagery. Modified
from Dierssen et al. (2020).
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However, more data is not always synonymous with better data.
Further, neither necessarily leads to better decisions. Decentralized
data capture can lead to inconsistencies in quality, making
comparisons between studies difficult. By popularizing the
collection of remote sensing data, standardized community best
practices in data capture and quality control are needed to avoid
‘garbage in, garbage out’ scenarios (Joyce et al., 2019). Development of
standardized instrument calibration procedures and data capture
protocols, including thorough accompanying metadata (Janssen
et al., 2012; Kalinauskaitė, 2017), should be a future priority of the
user community. For example, no accepted protocols are currently
available on how to best calibrate commercial off-the-shelf
hyperspectral imaging spectrometers for aquatic applications. Such
standardizationwill be particularly important when conductingmulti-
temporal analyses and when sharing datasets between users.

Data sharing is widely recognized for promoting innovation
and growth. Recent moves toward creating open and FAIR
(findable, accessible, interoperable, and reusable) data archives
have largely contributed to an acceleration of new remote sensing
applications. One only needs to look to the vast number of new
and exciting applications of Landsat data that followed open
access to the 30 + year archives to realize the value in this
approach (Wulder et al., 2016; Zhu et al., 2019). This
challenges the assumption that we only obtain value through a
financial transaction when the data collector sells its raw data.
Instead, FAIR data policies place value on the benefits of derived
products. We expect that continued FAIR data practices will
continue to remove barriers to remote sensing technology,
including the availability of hyperspectral imagery, and result
in a greater diversity of people engaging with the data to address
the many environmental challenges facing society.

To allow users to truly exploit raw data, derive products, and
create new knowledge, it is essential to support FAIR data with
the appropriate infrastructure and systems architecture on
similarly accessible platforms (Janssen et al., 2012;
Kalinauskaitė, 2017). Supporting open-source software options
such as QGIS (see Table 2) are critical in continuing to grow
relevant applications through open-minded community
collaboration. Yet, locally hosted software options are unlikely
to be the future for hyperspectral data processing. Hyperspectral
data fits within the category of “big geo data” (Krämer and
Senner, 2015) and is, therefore, better suited to scalable and
distributed cloud processing rather than local computing

capabilities (Wilson et al., 2018; Haut et al., 2019). Although
cloud-based high-performance computing (HPC) is not a new
concept (e.g., Plaza et al., 2011), its intersection with
hyperspectral data for environmental analyses–particularly in
aquatic environments–is in its infancy and remains an area for
considerable future growth.

Technological advances in computing technology, data storage,
and processing combined with the potential for increased data
availability due to decentralized data capture presents exciting
challenges and opportunities for hyperspectral aquatic remote
sensing in the future. The inherent high dimensionality, noise, and
intra-class variability plague the deep learning models that are
otherwise becoming a favored means for analyzing remotely
sensed data (Paoletti et al., 2019). However, with distributed
analyses, opportunities for community collaboration and
crowdsourcing emerge. Examples of this dynamic abound within
the rapidly developing field of machine learning and artificial
intelligence (Chirayath and Li, 2019).

Similarly, global initiatives such as AquaWatch and IOCCG
connect global networks of people, sensors, and platforms to
provide an integrated approach to aquatic ecosystem analyses
(Table 5). Such international groups can also provide a framework
for broad data access spanning nations and individual satellite
missions. In addition, the ocean optics community should be
engaged closely with the broader scientific community involved
with biogeochemical and ecosystem modeling (IOCCG,
2020). Going forward, better quantification of parameter
uncertainties will provide ocean modelers with the metrics
needed for assessing model performance. Finally, merging of
hyperspectral imagery with other types of remote sensing, such
as polarimetry (Chowdhary et al., 2019), provides exciting new
avenues for growth in what can be retrieved across Earth’s
diverse aquascape. There will continue to be a mutual benefit for
the hyperspectral community to continue to engage more
broadly with Earth and marine observations.

In conclusion, the field of hyperspectral aquatic remote sensing is
on the cusp of providing novel ways to sense aquatic ecosystems and
new parameters that can be better used by decision-makers and
scientists alike. The lists of resources and tools provided here are only a
starting point and will expand over time as more hyperspectral data
from satellites, drones and other platforms becomes accessible to the
larger community of scientists and practitioners. To aid in this effort,
we recommend posting resource information on public forums and

TABLE 5 | Relevant outreach programs.

Name Citation/Link Description

Geo Aquawatch https://www.geoaquawatch.org/ Develop and build the global capacity and utility of earth observation-derived water quality data,
products and information to support water resources management and decision making

HYPERedu https://www.enmap.org/events_education/
hyperedu

An online learning platform for hyperspectral remote sensing as part of the education initiative within
the EnMAP mission

IOCCG https://ioccg.org/ Promotes the application of remotely sensed ocean color and inland water radiometry data across all
aquatic environments, through coordination, training, advocacy and provision of expert advice

PACE Early Adopters https://pace.oceansciences.org/app_
adopters.htm

Promotes applied science and applications research designed to scale and integrate PACE data into
policy, business, and management activities that benefit society and inform decision making

Remote Sensing
Toolkit

https://www.rsrc.org.au/rstoolkit Designed for managers to understand how images collected from different satellites and aircraft can
be used to map and monitor changes over time
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updating resource lists and tools regularly. While the foundations for
algorithm development and data processing are becoming well
established, a significant gap is the availability of field data for both
algorithm training and validation across the global ocean and inland
waterways including common and episodic environmental
conditions. This includes not just the collection of well-calibrated
hyperspectral imagery but merged datasets coupling hyperspectral
reflectance with ancillary biodiversity and biogeochemical properties
obtained with consistent methodology and metadata. Such efforts will
require global cooperation and data sharing. Indeed, interdisciplinary,
international, commercial, and citizen collaborations will drive us
forward as a community to realize the hype of hyperspectral remote
sensing and provide important new insights into the blue marble
Earth.
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