1,062 research outputs found
Temperature dependence of ultraviolet absorption cross-sections of alternative hydrochlorofluorocarbons
Ultraviolet absorption cross-section of six alternative hydrochlorofluorocarbons (HCFC-21 HCFC-22, HCFC-123, HCFC-124, HCFC-141b and HCFC-142b1) have been measured between 170 and 260 nm for temperature ranging from 210 to 295 K. These data are compared with other available determinations performed at room temperature and their temperature dependence is discussed. Photodissociation coefficients are estimated and their temperature dependence is discussed. Impact of the photodissociation on the total atmospheric destruction of these compounds is illustrated
Ultraviolet absorption cross-sections of some carbonyl compounds and their temperature dependence
Ultraviolet absorption cross-section of phosgene (CCl2O), trichloroacetylchloride (CCl3-CClO) and trichloroacetaldehyde (CCl3-CHO) have been measured between 170 and 320 nm for temperature ranging from 210 to 295 K with classical double beam equipment. These data are compared with other available determinations performed at room temperature. Photodissociation coefficients are estimated and their temperature dependence is discussed. Impact of the photodissociation on the total atmospheric destruction of these compounds is illustrated
Optimization of Apodized Pupil Lyot Coronagraph for ELTs
We study the optimization of the Apodized Pupil Lyot Coronagraph (APLC) in
the context of exoplanet imaging with ground-based telescopes. The APLC
combines an apodization in the pupil plane with a small Lyot mask in the focal
plane of the instrument. It has been intensively studied in the literature from
a theoretical point of view, and prototypes are currently being manufactured
for several projects. This analysis is focused on the case of Extremely Large
Telescopes, but is also relevant for other telescope designs.
We define a criterion to optimize the APLC with respect to telescope
characteristics like central obscuration, pupil shape, low order segment
aberrations and reflectivity as function of the APLC apodizer function and mask
diameter. Specifically, the method was applied to two possible designs of the
future European-Extremely Large Telescope (E-ELT).
Optimum configurations of the APLC were derived for different telescope
characteristics. We show that the optimum configuration is a stronger function
of central obscuration size than of other telescope parameters. We also show
that APLC performance is quite insensitive to the central obscuration ratio
when the APLC is operated in its optimum configuration, and demonstrate that
APLC optimization based on throughput alone is not appropriate.Comment: 9 pages, 17 figures, accepted for publication in Astronomy &
Astrophysic
Comparison of coronagraphs for high contrast imaging in the context of Extremely Large Telescopes
We compare coronagraph concepts and investigate their behavior and
suitability for planet finder projects with Extremely Large Telescopes (ELTs,
30-42 meters class telescopes). For this task, we analyze the impact of major
error sources that occur in a coronagraphic telescope (central obscuration,
secondary support, low-order segment aberrations, segment reflectivity
variations, pointing errors) for phase, amplitude and interferometric type
coronagraphs. This analysis is performed at two different levels of the
detection process: under residual phase left uncorrected by an eXtreme Adaptive
Optics system (XAO) for a large range of Strehl ratio and after a general and
simple model of speckle calibration, assuming common phase aberrations between
the XAO and the coronagraph (static phase aberrations of the instrument) and
non-common phase aberrations downstream of the coronagraph (differential
aberrations provided by the calibration unit). We derive critical parameters
that each concept will have to cope with by order of importance. We evidence
three coronagraph categories as function of the accessible angular separation
and proposed optimal one in each case. Most of the time amplitude concepts
appear more favorable and specifically, the Apodized Pupil Lyot Coronagraph
gathers the adequate characteristics to be a baseline design for ELTs.Comment: 12 pages, 6 figures, Accepted for publication in A&
Intentional replantation for the management of maxillary sinusitis
Aim. To present a case that emphasizes the importance of the use of intentional replantation as a technique to successfully treat a periapical lesion and an odontogenic maxillary sinusitis through the alveolus at the same time. Summary. This case report presents a patient with odontogenic maxillary sinusitis secondary to periapical disease of a maxillary molar that had previously received root canal treatment. The molar was extracted, with drainage and rinsing of the maxillary sinus. The apices were resected extra-orally, and the retrograde cavity was prepared with ultrasound and retrograde filling using silver amalgam. The tooth was then replanted. After 2 years, the patient was asymptomatic, periapical radiography showed no evidence of root resorption and computed tomography scanning demonstrated the resolution of maxillary sinusitis
Human Resources and the Resource Based View of the Firm
The resource-based view (RBV) of the firm has influenced the field of strategic human resource management (SHRM) in a number of ways. This paper explores the impact of the RBV on the theoretical and empirical development of SHRM. It explores how the fields of strategy and SHRM are beginning to converge around a number of issues, and proposes a number of implications of this convergence
A spectroscopic survey of thick disc stars outside the solar neighbourhood
We performed a spectroscopic survey of nearly 700 stars probing the galactic
thick disc far from the solar neighbourhood towards the galactic coordinates
(l~277, b~47). The derived effective temperatures, surface gravities and
overall metallicities were then combined with stellar evolution isochrones,
radial velocities and proper motions to derive the distances, kinematics and
orbital parameters of the sample stars. The targets belonging to each galactic
component (thin disc, thick disc, halo) were selected either on their
kinematics or according to their position above the galactic plane, and the
vertical gradients were also estimated. We present here atmospheric parameters,
distances and kinematics for this sample, and a comparison of our kinematic and
metallicity distributions with the Besancon model of the Milky Way. The thick
disc far from the solar neighbourhood is found to differ only slightly from the
thick disc properties as derived in the solar vicinity. For regions where the
thick disc dominates, we measured vertical velocity and metallicity trends of
d(V_phi)/dZ = 19 +/- 8 km/s/kpc and d[M/H]/dZ = -0.14 +/- 0.05 dex/kpc,
respectively. These trends can be explained as a smooth transition between the
different galactic components, although intrinsic gradients could not be
excluded. In addition, a correlation d(V_phi)/d[M/H] = -45 +/- 12 km/s/dex
between the orbital velocity and the metallicity of the thick disc is detected.
This gradient is inconsistent with the SDSS photometric survey analysis, which
did not detect any such trend, and challenges radial migration models of thick
disc formation. Estimations of the scale heights and scale lengths for
different metallicity bins of the thick disc result in consistent values, with
hR~3.4 \pm 0.7 kpc, and hZ~694 \pm 45 pc, showing no evidence of relics of
destroyed massive satellites.Comment: 19 pages, 15 figures, accepted for publication in A&
- …