3,907 research outputs found

    Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations

    Full text link
    We have measured the number of quasiparticles and their lifetime in aluminium superconducting microwave resonators. The number of excess quasiparticles below 160 mK decreases from 72 to 17 μ\mum−3^{-3} with a 6 dB decrease of the microwave power. The quasiparticle lifetime increases accordingly from 1.4 to 3.5 ms. These properties of the superconductor were measured through the spectrum of correlated fluctuations in the quasiparticle system and condensate of the superconductor, which show up in the resonator amplitude and phase respectively. Because uncorrelated noise sources vanish, fluctuations in the superconductor can be studied with a sensitivity close to the vacuum noise

    Number fluctuations of sparse quasiparticles in a superconductor

    Full text link
    We have directly measured quasiparticle number fluctuations in a thin film superconducting Al resonator in thermal equilibrium. The spectrum of these fluctuations provides a measure of both the density and the lifetime of the quasiparticles. We observe that the quasiparticle density decreases exponentially with decreasing temperature, as theoretically predicted, but saturates below 160 mK to 25-55 per cubic micron. We show that this saturation is consistent with the measured saturation in the quasiparticle lifetime, which also explains similar observations in qubit decoherence times

    The MUSE-Wide Survey: A first catalogue of 831 emission line galaxies

    Get PDF
    We present a first instalment of the MUSE-Wide survey, covering an area of 22.2 arcmin2^2 (corresponding to ∼\sim20% of the final survey) in the CANDELS/Deep area of the Chandra Deep Field South. We use the MUSE integral field spectrograph at the ESO VLT to conduct a full-area spectroscopic mapping at a depth of 1h exposure time per 1 arcmin2^2 pointing. We searched for compact emission line objects using our newly developed LSDCat software based on a 3-D matched filtering approach, followed by interactive classification and redshift measurement of the sources. Our catalogue contains 831 distinct emission line galaxies with redshifts ranging from 0.04 to 6. Roughly one third (237) of the emission line sources are Lyman α\alpha emitting galaxies with 3<z<63 < z < 6, only four of which had previously measured spectroscopic redshifts. At lower redshifts 351 galaxies are detected primarily by their [OII] emission line (0.3≲z≲1.50.3 \lesssim z \lesssim 1.5), 189 by their [OIII] line (0.21≲z≲0.850.21 \lesssim z \lesssim 0.85), and 46 by their Hα\alpha line (0.04≲z≲0.420.04 \lesssim z \lesssim 0.42). Comparing our spectroscopic redshifts to photometric redshift estimates from the literature, we find excellent agreement for z<1.5z<1.5 with a median Δz\Delta z of only ∼4×10−4\sim 4 \times 10^{-4} and an outlier rate of 6%, however a significant systematic offset of Δz=0.26\Delta z = 0.26 and an outlier rate of 23% for Lyα\alpha emitters at z>3z>3. Together with the catalogue we also release 1D PSF-weighted extracted spectra and small 3D datacubes centred on each of the 831 sources.Comment: 24 pages, 14 figures, accepted for publication in A&A, data products are available for download from http://muse-vlt.eu/science/muse-wide-survey/ and later via the CD

    Additional outcomes and subgroup analyses of NXY-059 for acute ischemic stroke in the SAINT I trial

    Get PDF
    &lt;p&gt;&lt;b&gt;Background and Purpose:&lt;/b&gt; NXY-059 is a free radical-trapping neuroprotectant demonstrated to reduce disability from ischemic stroke. We conducted analyses on additional end points and sensitivity analyses to confirm our findings.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods:&lt;/b&gt; We randomized 1722 patients with acute ischemic stroke to a 72-hour infusion of placebo or intravenous NXY-059 within 6 hours of stroke onset. The primary outcome was disability at 90 days, as measured by the modified Rankin Scale (mRS), a 6-point scale ranging from 0 (no residual symptoms) to 5 (bed-bound, requiring constant care). Additional and exploratory analyses included mRS at 7 and 30 days; subgroup interactions with final mRS; assessments of activities of daily living by Barthel index; and National Institutes of Health Stroke Scale (NIHSS) neurological scores at 7 and 90 days.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results:&lt;/b&gt; NXY-059 significantly improved the distribution of the mRS disability score compared with placebo at 7, 30, and 90 days (Cochran-Mantel-Haenszel test P=0.002, 0.004, 0.038, respectively; 90-day common odds ratio 1.20; 95% CI, 1.01 to 1.42). The benefit was not attributable to any specific baseline characteristic, stratification variable or subgroup interaction. Neurological scores were improved at 7 days (odds ratio [OR], 1.46; 95% CI, 1.13, 1.89; P=0.003) and the Barthel index was improved at 7 and 30 days (OR, 1.55; 95% CI, 1.22, 1.98; P&#60;0.0001; OR, 1.27; 95% CI, 1.01, 1.59; P=0.02).&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; NXY-059 within 6 hours of acute ischemic stroke significantly reduced disability. Benefit on neurological scores and activities of daily living was detectable early but not significant at 90 days; however, our trial was underpowered to measure effects on the neurological examination. The benefit on disability is not confounded by interactions and is supported by other outcome measures.&lt;/p&gt

    NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II trials

    Get PDF
    &lt;p&gt;&lt;b&gt;Background and Purpose:&lt;/b&gt; In animal models of acute ischemic stroke (AIS), the free radical-trapping agent NXY-059 showed promise as a neuroprotectant. SAINT I and II were randomized, placebo-controlled, double-blind trials to investigate the efficacy of NXY-059 in patients with AIS.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods:&lt;/b&gt; Patients with AIS received an infusion of intravenous NXY-059 or placebo within 6 hours from the onset of stroke symptoms. A pooled individual patient analysis was prespecified to assess the overall efficacy and to examine subgroups. The primary end point was the distribution of disability scores measured on the modified Rankin scale (mRS) at 90 days. Neurologic and activities of daily living scores were investigated as secondary end points. We also evaluated whether treatment with NXY-059 would reduce alteplase-related intracranial hemorrhages. Finally, we evaluated possible predictors of good or poor outcome.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results:&lt;/b&gt; An intent-to-treat efficacy analysis was based on 5028 patients. Baseline parameters and prognostic factors were well balanced between treatment groups. The distribution of scores on the mRS was not different in the group treated with NXY-059 (n = 2438) compared with the placebo group (n = 2456): odds ratio for limiting disability = 1.02; 95% CI, 0.92 to 1.13 (P = 0.682, Cochran-Mantel-Haenszel test). Comparisons at each level of the mRS confirmed an absence of benefit. There was no evidence of efficacy in prespecified subgroups or from the secondary outcome analyses. Mortality was equal in the 2 groups (16.7% vs 16.5%), and adverse event rates were similar. Among patients treated with alteplase, there was no decrease in rates of symptomatic or asymptomatic hemorrhage associated with NXY-059 treatment versus placebo. Subgroup analyses identified National Institutes of Health Stroke Scale score, age, markers of inflammation, blood glucose, and right-sided infarct as predictors of poor outcome.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; NXY-059 is ineffective for treatment of AIS within 6 hours of symptom onset. This is also true for subgroups and the prevention of alteplase-associated hemorrhage.&lt;/p&gt

    The MUSE-Wide Survey: Survey Description and First Data Release

    Get PDF
    We present the MUSE-Wide survey, a blind, 3D spectroscopic survey in the CANDELS/GOODS-S and CANDELS/COSMOS regions. Each MUSE-Wide pointing has a depth of 1 hour and hence targets more extreme and more luminous objects over 10 times the area of the MUSE-Deep fields (Bacon et al. 2017). The legacy value of MUSE-Wide lies in providing "spectroscopy of everything" without photometric pre-selection. We describe the data reduction, post-processing and PSF characterization of the first 44 CANDELS/GOODS-S MUSE-Wide pointings released with this publication. Using a 3D matched filtering approach we detected 1,602 emission line sources, including 479 Lyman-α\alpha (Lya) emitting galaxies with redshifts 2.9≲z≲6.32.9 \lesssim z \lesssim 6.3. We cross-match the emission line sources to existing photometric catalogs, finding almost complete agreement in redshifts and stellar masses for our low redshift (z < 1.5) emitters. At high redshift, we only find ~55% matches to photometric catalogs. We encounter a higher outlier rate and a systematic offset of Δ\Deltaz≃\simeq0.2 when comparing our MUSE redshifts with photometric redshifts. Cross-matching the emission line sources with X-ray catalogs from the Chandra Deep Field South, we find 127 matches, including 10 objects with no prior spectroscopic identification. Stacking X-ray images centered on our Lya emitters yielded no signal; the Lya population is not dominated by even low luminosity AGN. A total of 9,205 photometrically selected objects from the CANDELS survey lie in the MUSE-Wide footprint, which we provide optimally extracted 1D spectra of. We are able to determine the spectroscopic redshift of 98% of 772 photometrically selected galaxies brighter than 24th F775W magnitude. All the data in the first data release - datacubes, catalogs, extracted spectra, maps - are available on the website https://musewide.aip.de. [abridged]Comment: 25 pages 15+1 figures. Accepted, A&A. Comments welcom

    Cactus Framework: Black Holes to Gamma Ray Bursts

    Get PDF
    Gamma Ray Bursts (GRBs) are intense narrowly-beamed flashes of gamma-rays of cosmological origin. They are among the most scientifically interesting astrophysical systems, and the riddle concerning their central engines and emission mechanisms is one of the most complex and challenging problems of astrophysics today. In this article we outline our petascale approach to the GRB problem and discuss the computational toolkits and numerical codes that are currently in use and that will be scaled up to run on emerging petaflop scale computing platforms in the near future. Petascale computing will require additional ingredients over conventional parallelism. We consider some of the challenges which will be caused by future petascale architectures, and discuss our plans for the future development of the Cactus framework and its applications to meet these challenges in order to profit from these new architectures

    Role of Particle Interactions in the Feshbach Conversion of Fermion Atoms to Bosonic Molecules

    Full text link
    We investigate the Feshbach conversion of fermion atomic pairs to condensed boson molecules with a microscopic model that accounts the repulsive interactions among all the particles involved. We find that the conversion efficiency is enhanced by the interaction between boson molecules while suppressed by the interactions between fermion atoms and between atom and molecule. In certain cases, the combined effect of these interactions leads to a ceiling of less than 100% on the conversion efficiency even in the adiabatic limit. Our model predicts a non-monotonic dependence of the efficiency on mean atomic density. Our theory agrees well with recent experiments on 6^6Li and 40^{40}K.Comment: 5 pages, 4 figure

    Numerical simulations with a first order BSSN formulation of Einstein's field equations

    Get PDF
    We present a new fully first order strongly hyperbolic representation of the BSSN formulation of Einstein's equations with optional constraint damping terms. We describe the characteristic fields of the system, discuss its hyperbolicity properties, and present two numerical implementations and simulations: one using finite differences, adaptive mesh refinement and in particular binary black holes, and another one using the discontinuous Galerkin method in spherical symmetry. The results of this paper constitute a first step in an effort to combine the robustness of BSSN evolutions with very high accuracy numerical techniques, such as spectral collocation multi-domain or discontinuous Galerkin methods.Comment: To appear in Physical Review

    Recoil velocities from equal-mass binary black-hole mergers: a systematic investigation of spin-orbit aligned configurations

    Full text link
    Binary black-hole systems with spins aligned with the orbital angular momentum are of special interest, as studies indicate that this configuration is preferred in nature. If the spins of the two bodies differ, there can be a prominent beaming of the gravitational radiation during the late plunge, causing a recoil of the final merged black hole. We perform an accurate and systematic study of recoil velocities from a sequence of equal-mass black holes whose spins are aligned with the orbital angular momentum, and whose individual spins range from a = +0.584 to -0.584. In this way we extend and refine the results of a previous study and arrive at a consistent maximum recoil of 448 +- 5 km/s for anti-aligned models as well as to a phenomenological expression for the recoil velocity as a function of spin ratio. This relation highlights a nonlinear behavior, not predicted by the PN estimates, and can be readily employed in astrophysical studies on the evolution of binary black holes in massive galaxies. An essential result of our analysis is the identification of different stages in the waveform, including a transient due to lack of an initial linear momentum in the initial data. Furthermore we are able to identify a pair of terms which are largely responsible for the kick, indicating that an accurate computation can be obtained from modes up to l=3. Finally, we provide accurate measures of the radiated energy and angular momentum, finding these to increase linearly with the spin ratio, and derive simple expressions for the final spin and the radiated angular momentum which can be easily implemented in N-body simulations of compact stellar systems. Our code is calibrated with strict convergence tests and we verify the correctness of our measurements by using multiple independent methods whenever possible.Comment: 24 pages, 15 figures, 5 table
    • …
    corecore