7,024 research outputs found

    Identifying Prognostic Indicators for Electrical Treeing in Solid Insulation through PD Analysis

    Get PDF
    This paper presents early results from an experimental study of electrical treeing on commercially available pre-formed silicone samples. A needle-plane test arrangement was set up using hypodermic needles. Partial discharge (PD) data was captured using both the IEC 60270 electrical method and radio frequency (RF) sensors, and visual observations are made using a digital microscope. Features of the PD plot that corresponded to electrical tree growth were assessed, evaluating the similarities and differences of both PD measurement techniques. Three univariate phase distributions were extracted from the partial discharge phase-resolved (PRPD) plot and the first four statistical moments were determined. The implications for automated lifetime prediction of insulation samples due to electrical tree development are discussed

    Effects of surfaces on resistor percolation

    Full text link
    We study the effects of surfaces on resistor percolation at the instance of a semi-infinite geometry. Particularly we are interested in the average resistance between two connected ports located on the surface. Based on general grounds as symmetries and relevance we introduce a field theoretic Hamiltonian for semi-infinite random resistor networks. We show that the surface contributes to the average resistance only in terms of corrections to scaling. These corrections are governed by surface resistance exponents. We carry out renormalization group improved perturbation calculations for the special and the ordinary transition. We calculate the surface resistance exponents \phi_{\mathcal S \mathnormal} and \phi_{\mathcal S \mathnormal}^\infty for the special and the ordinary transition, respectively, to one-loop order.Comment: 19 pages, 3 figure

    Anomalous gauge-boson couplings and the Higgs-boson mass

    Full text link
    We study anomalous gauge-boson couplings induced by a locally SU(2) x U(1) invariant effective Lagrangian containing ten operators of dimension six built from the boson fields of the Standard Model (SM) before spontaneous symmetry breaking (SSB). After SSB some operators lead to new three- and four-gauge-boson interactions, some contribute to the diagonal and off-diagonal kinetic terms of the gauge bosons and to the mass terms of the W and Z bosons. This requires a renormalisation of the gauge-boson fields, which, in turn, modifies the charged- and neutral-current interactions, although none of the additional operators contain fermion fields. Bounds on the anomalous couplings from electroweak precision measurements at LEP and SLD are correlated with the Higgs-boson mass m_H. Rather moderate values of anomalous couplings allow m_H up to 500 GeV. At a future linear collider the triple-gauge-boson couplings gammaWW and ZWW can be measured in the reaction e+e- --> WW. We compare three approaches to anomalous gauge-boson couplings: the form-factor approach, the addition of anomalous coupling terms to the SM Lagrangian after and, as outlined above, before SSB. The translation of the bounds on the couplings from one approach to another is not straightforward. We show that it can be done for the process e+e- --> WW by defining new effective ZWW couplings.Comment: 50 pages, 4 figures; version to appear in EPJ

    Compton telescope with coded aperture mask: Imaging with the INTEGRAL/IBIS Compton mode

    Get PDF
    Compton telescopes provide a good sensitivity over a wide field of view in the difficult energy range running from a few hundred keV to several MeV. Their angular resolution is, however, poor and strongly energy dependent. We present a novel experimental design associating a coded mask and a Compton detection unit to overcome these pitfalls. It maintains the Compton performance while improving the angular resolution by at least an order of magnitude in the field of view subtended by the mask. This improvement is obtained only at the expense of the efficiency that is reduced by a factor of two. In addition, the background corrections benefit from the coded mask technique, i.e. a simultaneous measurement of the source and background. This design is implemented and tested using the IBIS telescope on board the INTEGRAL satellite to construct images with a 12' resolution over a 29 degrees x 29 degrees field of view in the energy range from 200 keV to a few MeV. The details of the analysis method and the resulting telescope performance, particularly in terms of sensitivity, are presented

    Monte Carlo simulation results for critical Casimir forces

    Full text link
    The confinement of critical fluctuations in soft media induces critical Casimir forces acting on the confining surfaces. The temperature and geometry dependences of such forces are characterized by universal scaling functions. A novel approach is presented to determine them for films via Monte Carlo simulations of lattice models. The method is based on an integration scheme of free energy differences. Our results for the Ising and the XY universality class compare favourably with corresponding experimental results for wetting layers of classical binary liquid mixtures and of 4He, respectively.Comment: 14 pages, 5 figure

    Preprint arXiv: 2208.10487 Submitted on 22 Aug 2022

    Get PDF
    The physics of long-range interacting quantum systems is currently living a renaissance driven by the fast progress in quantum simulators. In these systems many paradigms of statistical physics do not apply and also the universal long-wavelength physics gets substantially modified by the presence of long-ranged forces. Here we explore the low-energy excitations of several long-range interacting quantum systems, including spin models and interacting Bose gases, in the ordered phase associated with the spontaneous breaking of U(1) and SU(2) symmetries. Instead of the expected Goldstone modes, we find three qualitatively different regimes, depending on the range of the interaction. In one of these regimes the Goldstone modes are gapped, via a generalization of the Higgs mechanism. Moreover, we show how this effect is realized in current experiments with ultracold atomic gases in optical cavities

    Kinematics of massive star ejecta in the Milky Way as traced by 26^26Al

    Get PDF
    Context. Massive stars form in groups and their winds and supernova explosions create superbubbles up to kpc in size. The fate of their ejecta is of vital importance for the dynamics of the interstellar medium, for chemical evolution models, and the chemical enrichment of galactic halos and the intergalactic medium. However, ejecta kinematics and the characteristic scales in space and time have not been explored in great detail beyond ~10 Ka. Aims: Through measurement of radioactive 26Al with its decay time constant at ~106 years, we aim to trace the kinematics of cumulative massive-star and supernova ejecta independent of the uncertain gas parameters over million-year time scales. Our goal is to identify the mixing time scale and the spatio-kinematics of such ejecta from the pc to kpc scale in our Milky Way. Methods: We use the SPI spectrometer on the INTEGRAL observatory and its observations along the Galactic ridge to trace the detailed line shape systematics of the 1808.63 keV gamma-ray line from 26Al decay. We determine line centroids and compare these to Doppler shift expectations from large-scale systematic rotation around the Galaxy centre, as observed in other Galactic objects. Results: We measure the radial velocities of gas traced by 26Al, averaged over the line of sight, as a function of Galactic longitude. We find substantially higher velocities than expected from Galactic rotation, the average bulk velocity being ~200 km s-1 larger than predicted from Galactic rotation. The observed radial velocity spread implies a Doppler broadening of the gamma-ray line that is consistent with our measurements of the overall line width. We can reproduce the observed characteristics with 26Al sources located along the inner spiral arms, when we add a global blow-out preference into the forward direction away from arms into the inter-arm region, as is expected when massive stars are offset towards the spiral-arm leading edge. With the known connection of superbubbles to the gaseous halo, this implies angular-momentum transfer in the disk-halo system and consequently also radial gas flows. The structure of the interstellar gas above the disk affects how ionizing radiation may escape and ionize intergalactic gas.Peer reviewe
    corecore