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Abstract—This paper presents early results from an 
experimental study of electrical treeing on commercially 
available pre-formed silicone samples. A needle-plane test 
arrangement was set up using hypodermic needle.  Partial 
discharge (PD) data was captured using both the IEC60270 
electrical method and radio frequency (RF) sensors, and visual 
observations are made using a digital microscope. Features of the 
PD plot that corresponded to electrical tree growth were 
assessed, evaluating the similarities and differences of both PD 
measurement techniques. Three univariate phase distributions 
were extracted from the partial discharge phase-resolved (PRPD) 
plot and the first four statistical moments were determined. The 
implications for automated lifetime prediction of insulation 
samples due to electrical tree development are discussed. 

Keywords—Silicone rubber (SiR); electrical treeing; partial 
discharge; prognostics. 

I.  INTRODUCTION 
Prognostic is defined in [1] as “the prediction of the future 

state of health based on current and historical health 
conditions”. In solid insulation, the ultimate goal of prognostics 
is to predict the advent of failure, i.e., insulation breakdown, in 
terms of remaining useful life (RUL). This paper takes a step 
towards a prognostic system for insulation breakdown, by 
investigating features in data which correspond to insulation 
ageing. 

Electrical treeing is a common degradation mechanism in 
solid insulation with progressive faults leading to potentially 
catastrophic failure. Electrical treeing can be initiated from a 
water tree or insulation defects that can give rise to large local 
field concentration. Such defects are metallic protrusions, 
micro voids and contaminants [2].  

The presence of electrical treeing can be detected through 
partial discharge (PD) monitoring [3]. Automated PD data 
analysis systems have been shown to correctly diagnose the 
defect causing PD [4]. This paper aims to extend this concept 
towards predicting the evolution of the defects by investigating 
the features of the PD plot which correspond to electrical tree 
growth; moving from diagnostics (identifying the presence of a 
tree) to prognostics. 

 

 

 

II. EXPERIMENTAL SETUP 
Various polymers have been used in electrical treeing 

experiments, e.g. epoxy resin, cross-linked polyethylene 
(XLPE), ethylene vinyl acetate (EVA), and silicone rubber 
(SiR). In this paper, SiR is chosen as the test specimen as it 
requires a very short time to initiate electrical treeing even at 
low applied voltage.  

This preliminary study uses commercially available pre-
formed silicone samples, which ensure consistency and 
eliminate the need for mixing, degassing and heating in sample 
preparation. The sample is tested using a needle-plane 
arrangement by inserting a fresh hypodermic needle (50 mm 
length, 1mm diameter, 10 µm tip radius) into the sample with 
2mm gap between the needle tip and the plane electrode. The 
needle is pulled slightly backward to create a needle-shaped 
void. The sample is placed against the earth plate inside an 
acrylic container and immersed in mineral oil to suppress 
extraneous PD. The dimension of the test sample is illustrated 
in Fig 1. 

Both IEC60270 and radio frequency (RF) detection 
methods were applied for PD monitoring. The phase-resolved 
partial discharge (PRPD) patterns from both techniques were 
recorded through computer aided PD measuring system, i.e. 
LDS-6 (Doble Lemke) and PortSUB (Qualitrol) respectively. 
The apparent charge magnitude from LDS-6 is recorded 
manually every 5 minutes followed by a 2-minute downtime. 
PortSUB on the other hand, records the corresponding level of 
detected signal automatically in 64 phase buckets per cycle for 
255 cycles. The growth of electrical treeing is monitored 
simultaneously using a digital microscope (AM2011 Dino-Lite 
Basic) and the image of the test sample is captured every 5 
minutes.  

III. RESULTS AND DISCUSSION 
This paper reports results from one particular electrical 

treeing experiment in a pre-formed SiR sample. This sample 
was chosen for detailed study, as the morphology of the tree 
corresponds with other experiments reported in the literature. 
The test sample was aged for 18 hours and the growth 
evolution is highlighted below by referring to the voltage 
application regime outlined in Fig. 2. The voltage was 
periodically switched off as the experiment could not be left 
unattended, accepting that this may influence the tree growth.  
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Fig. 1. Test sample. 
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Fig. 4. PRPD patterns measured with IEC60270 st
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C. Statistical Analysis 
 In order to identify features of the PD plo
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IV. CONCLUSION
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 Both IEC60270 and RF technique show fairly similar 
PRPD patterns. From statistical analysis, the RF technique 
shows larger variation because of the reduced phase resolution. 
This work will continue the identification of prognostic 
indicators using other promising methods, e.g. pulse shape 
analysis and pulse sequence analysis. In future, these features 
will be used for lifetime prediction of insulation samples. 
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Fig. 6. Statistical features calculated from IEC60270 measurement (a) Pulse number distribution, Hn( ), (b) Mean pulse height distribution, Hqn( ), and            
(c) Maximum pulse height distribution, Hqm( ). 
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Fig. 7. Statistical features calculated from RF technique (a) Pulse number distribution, Hn( ), (b) Mean pulse height distribution, Hqn( ), and                             
(c) Maximum pulse height distribution, Hqm( ).

 


