16 research outputs found
Majorana qubit decoherence by quasiparticle poisoning
We consider the problem of quasiparticle poisoning in a nanowire-based
realization of a Majorana qubit, where a spin-orbit-coupled semiconducting wire
is placed on top of a (bulk) superconductor. By making use of recent
experimental data exhibiting evidence of a low-temperature residual
non-equilibrium quasiparticle population in superconductors, we show by means
of analytical and numerical calculations that the dephasing time due to the
tunneling of quasiparticles into the nanowire may be problematically short to
allow for qubit manipulation.Comment: 10 pages, 7 figure
Decoherence of Majorana qubits by noisy gates
We propose and study a realistic model for the decoherence of topological
qubits, based on Majorana fermions in one-dimensional topological
superconductors. The source of decoherence is the fluctuating charge on a
capacitively coupled gate, modeled by non-interacting electrons. In this
context, we clarify the role of quantum fluctuations and thermal fluctuations
and find that quantum fluctuations do not lead to decoherence, while thermal
fluctuations do. We explicitly calculate decay times due to thermal noise and
give conditions for the gap size in the topological superconductor and the gate
temperature. Based on this result, we provide simple rules for gate geometries
and materials optimized for reducing the negative effect of thermal charge
fluctuations on the gate
Towards a realistic transport modeling in a superconducting nanowire with Majorana fermions
Motivated by recent experiments searching for Majorana fermions (MFs) in
hybrid semiconducting-superconducting nanostructures, we consider a realistic
tight-binding model and analyze its transport behavior numerically. In
particular, we take into account the presence of a superconducting contact,
used in real experiments to extract the current, which is usually not included
in theoretical calculations. We show that important features emerge that are
absent in simpler models, such as the shift in energy of the proximity gap
signal, and the enhanced visibility of the topological gap for increased
spin-orbit interaction. We find oscillations of the zero bias peak as a
function of the magnetic field and study them analytically. We argue that many
of the experimentally observed features hint at an actual spin-orbit
interaction larger than the one typically assumed. However, even taking into
account all the known ingredients of the experiments and exploring many
parameter regimes for MFs, we are not able to reach full agreement with the
reported data. Thus, a different physical origin for the observed zero-bias
peak cannot be excluded.Comment: 7 pages, 7 figures; Published versio
Correlations between Majorana fermions through a superconductor
We consider a model of ballistic quasi-one dimensional semiconducting wire
with intrinsic spin-orbit interaction placed on the surface of a bulk s-wave
superconductor (SC), in the presence of an external magnetic field. This setup
has been shown to give rise to a topological superconducting state in the wire,
characterized by a pair of Majorana-fermion (MF) bound states formed at the two
ends of the wire. Here we demonstrate that, besides the well-known direct
overlap-induced energy splitting, the two MF bound states may hybridize via
elastic correlated tunneling processes through virtual quasiparticles states in
the SC, giving rise to an additional energy splitting between MF states from
the same as well as from different wires.Comment: 7 pages, 3 figure
Quantum charge pumping through fractional Fermions in charge density modulated quantum wires and Rashba nanowires
We study the phenomenon of adiabatic quantum charge pumping in systems
supporting fractionally charged fermionic bound states, in two different
setups. The first quantum pump setup consists of a charge-density-modulated
quantum wire, and the second one is based on a semiconducting nanowire with
Rashba spin-orbit interaction, in the presence of a spatially oscillating
magnetic field. In both these quantum pumps transport is investigated in a
N-X-N geometry, with the system of interest (X) connected to two normal-metal
leads (N), and the two pumping parameters are the strengths of the effective
wire-lead barriers. Pumped charge is calculated within the scattering matrix
formalism. We show that quantum pumping in both setups provides a unique
signature of the presence of the fractional-fermion bound states, in terms of
asymptotically quantized pumped charge. Furthermore, we investigate shot noise
arising due to quantum pumping, verifying that quantized pumped charge
corresponds to minimal shot noise.Comment: This is the published versio
Transport signature of fractional Fermions in Rashba nanowires
We study theoretically transport through a semiconducting nanowire (NW) in
the presence of Rashba spin orbit interaction, uniform magnetic field, and
spatially modulated magnetic field. The system is fully gapped, and the
interplay between the spin orbit interaction and the magnetic fields leads to
fractionally charged fermion (FF) bound states of Jackiw-Rebbi type at each end
of the nanowire. We investigate the transport and noise behavior of a N/NW/N
system, where the wire is contacted by two normal leads (N), and we look for
possible signatures that could help in the experimental detection of such
states. We find that the differential conductance and the shot noise exhibit a
sub-gap structure which fully reveals the presence of the FF state. Our
predictions can be tested in standard two-terminal measurements through
InSb/InAs nanowires.Comment: 5 pages, 5 figure
Spin drag e separazione spin-carica in sistemi fermionici unidimensionali
I sistemi di fermioni interagenti, e tra questi in particolare il liquido di elettroni, sono sempre stati uno degli oggetti di studio principali in fisica della materia condensata, tanto a livello teorico quanto a livello sperimentale.
La non banalità del problema interagente rispetto a quello noninteragente ha costituito motivo di continui sforzi, tesi al miglioramento delle soluzioni approssimate al problema. In particolare si è cercato di tener conto e modellizzare nel modo più accurato possibile la presenza di effetti a molti corpi, quali quelli di scambio e correlazione.
Nel caso unidimensionale, su cui mi focalizzo in questa tesi, l'effetto delle interazioni a molti corpi è particolarmente vistoso e lo spettro di eccitazione presenta caratteristiche peculiari. A causa di ciò, contrariamente a quanto accade in dimensionalità D=2 o D=3, i sistemi unidimensionali non possono essere descritti utilizzando la teoria di Landau dei liquidi di Fermi normali. Il paradigma appropriato per il caso D=1 è costituito invece dal cosiddetto {\it liquido di Luttinger}, concetto introdotto da Haldane nei primi anni '80. La caratteristica distintiva di un liquido di Luttinger è il fatto che le eccitazioni di bassa energia sono oscillazioni collettive della densità di carica o di spin, contrariamente a quanto accade per un liquido di Fermi, dove le eccitazioni elementari sono singole quasiparticelle che portano carica e spin in maniera inseparabile. Tale proprietà conduce immediatamente al fenomeno della {\it separazione spin-carica}, cioè al fatto che le eccitazioni di bassa energia nel canale di carica e quelle nel canale di spin sono completamente disaccoppiate e propagano con velocità diverse, producendo appunto una separazione osservabile.
A livello teorico il disaccoppiamento dei gradi di libertà di carica e spin è stato previsto da tempo, e può ad esempio essere ottenuto agevolmente con la tecnica della bosonizzazione. Il primo capitolo della mia tesi è dedicato alla presentazione ed analisi delle varie teorie attualmente utilizzate per trattare gli effetti a molti corpi; è inclusa anche una breve presentazione della teoria del funzionale di densità (DFT) e della teoria del funzionale di densità di corrente (CDFT), che sarà usata più avanti nella tesi. La presentazione del formalismo della Hamiltoniana di Luttinger e della bosonizzazione per il caso unidimensionale è posposta al capitolo 3.
Nel Capitolo 2 affronto la questione del trasporto in sistemi polarizzati nello spin, ovverosia la realizzazione e il mantenimento di correnti di spin. Negli ultimi anni l'interesse per tale argomento è cresciuto notevolmente, sia per la sua potenziale applicazione al settore emergente della ``spintronica'', sia per la stretta relazione che esso ha con il mondo della computazione quantistica. In particolare, descrivo un meccanismo intrinseco che genera una sorta di ``attrito'' a molti corpi tra elettroni con spin opposto, meccanismo definito {\it spin drag}.
Tale meccanismo è attivo ogniqualvolta le velocità medie degli elettroni con spin up e di quelli con spin down sono diverse: lo scattering coulombiano trasferisce impulso dalla componente più veloce a quella più lenta, tendendo così in definitiva a ``frenare'' la prima delle due.
In particolare, nel Capitolo 2 mi sono occupato del calcolo del coefficiente di spin drag gamma per sistemi unidimensionali omogenei; l'inverso di gamma, ovvero il tempo di rilassamento tau, governa lo smorzamento delle eccitazioni di spin. Per il calcolo ho considerato un sistema con polarizzazione di spin arbitraria, procedendo prima in maniera analitica, cosa possibile solo nei limiti di temperatura zero e di temperatura infinita, e poi numericamente, anche a temperature intermedie.
Una eventuale verifica sperimentale dei risultati ottenuti in questo lavoro di tesi sarebbe attualmente praticabile: gas di atomi freddi in geometrie quasi-unidimensionali possono essere sistemi particolarmente adatti alla creazione di pacchetti di spin, dalla cui propagazione smorzata e diffusiva ottenere una misura del tempo di rilassamento di spin drag. Per i gas di atomi freddi continuiamo ad usare la terminologia ``spin'' e ``carica'', dove però il ruolo dello spin è giocato da un grado di libertà atomico interno (iperfine), e quello della carica dalla densità di massa atomica.
Nel Capitolo 3 presento in dettaglio il paradigma del liquido di Luttinger e il procedimento della bosonizzazione che permette di prevedere formalmente la separazione spin-carica. Quindi passo a presentare sistemi di interesse sperimentale: gas di Fermi atomici in geometrie quasi-unidimensionali e liquidi di elettroni in quantum wires. Sono questi ultimi che hanno permesso la recente osservazione sperimentale della separazione spin-carica.
A questo punto, facendo riferimento ai contenuti del Capitolo 2, chiarisco il ruolo dello spin drag in 1D relativamente alla separazione spin-carica. A temperatura finita lo spin drag introduce un'ulteriore differenza tra i due gradi di libertà di carica e di spin: non solo le velocità , ma anche i coefficienti di smorzamento sono diversi per i due tipi di eccitazioni collettive; mentre la propagazione delle eccitazioni di carica di grandi lunghezze d'onda è essenzialmente di tipo balistico, la propagazione di spin è intrinsecamente smorzata e di tipo diffusivo. In un gas di Fermi atomico confinato in una trappola quasi-unidimensionale, pacchetti di spin possono essere preparati mediante l'utilizzo di fasci laser focalizzati. Lo studio della dinamica di questi pacchetti di spin deve tenere conto della presenza di due effetti fisici importanti: la disomogeneità indotta dalla trappola e l'azione fortemente perturbante dei fasci laser. Nel Capitolo 3 mi sono occupato di descrivere la dinamica di spin mediante CDFT dipendente dal tempo, che permette di tenere conto di entrambi questi effetti. Il contributo di spin drag al potenziale di scambio e correlazione, necessario per le equazioni di Kohn-Sham dipendenti dal tempo, è stato calcolato mediante un'approssimazione di densità locale basata sui risultati ottenuti nel Capitolo 2
Gauge fields and interferometry in folded graphene
Folded graphene flakes are a natural byproduct of the micromechanical
exfoliation process. In this Letter we show by a combination of analytical and
numerical methods that such systems behave as intriguing interferometers due to
the interplay between an externally applied magnetic field and the gauge field
induced by the deformations in the region of the fold.Comment: 4 pages, 3 figure
Time-Dependent Current-Density-Functional Theory of Spin-Charge Separation and Spin Drag in One-Dimensional Ultracold Fermi Gases
URL:http://link.aps.org/doi/10.1103/PhysRevLett.101.206402
DOI:10.1103/PhysRevLett.101.206402Motivated by the large interest in the nonequilibrium dynamics of low-dimensional quantum many-body systems, we present a fully microscopic theoretical and numerical study of the charge and spin dynamics in a one-dimensional ultracold Fermi gas following a quench. Our approach, which is based on time-dependent current-density-functional theory, is applicable well beyond the linear-response regime and produces both spin-charge separation and spin-drag-induced broadening of the spin packets.G. X. was supported by NSF of China under Grant
No. 10704066 and by DOE Grant No. DE-FG02-
05ER46203. G.V. was supported by NSF Grants
Nos. DMR-031368 and DMR-0705460
Blockade and Counterflow Supercurrent in exciton-condensate Josephson junctions
We demonstrate that perfect conversion between charged supercurrents in
superconductors and neutral supercurrents in electron-hole pair condensates is
possible via a new Andreev-like scattering mechanism. As a result, when two
superconducting circuits are coupled through a bilayer exciton condensate, the
superflow in both layers is drastically modified. Depending on the phase biases
the supercurrents can be completely blocked or exhibit perfect drag.Comment: 4 pages, 2 figure