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Gauge fields and interferometry in folded graphene
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Folded graphene flakes are a natural byproduct of the micromechanical exfoliation process. In this article we
show by a combination of analytical and numerical methods that such systems behave as intriguing interferometers
due to the interplay between an externally applied magnetic field and the gauge field induced by the deformations
in the region of the fold.
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I. INTRODUCTION

Gauge fields modulate the dynamics and interactions of
electrons in a variety of scales from particle cosmology
to phase transitions in condensed matter.1 Graphene is a
one-atom-thick carbon crystal where charge carriers behave
as massless quasiparticles2 and where the impact of lattice
deformations on electrons is equivalent to effective gauge
fields.2–5 Graphene behaves as a highly stretchable membrane6

whose elastic deformations can be induced in a controlled
way.7

A typical system in which such deformations occur is
represented by a graphene fold [see Fig. 1(a)], that is, a single
graphene flake that, as a result of mechanical or chemical
procedures, is bent onto itself thereby creating two atomically
close graphene layers lying on top of each other. Such
folds are intentionally or accidentally created, for example,
during the micromechanical exfoliation process that leads to
the production of graphene monolayers.8 Depending on the
rotational stacking fault which is introduced between the two
layers, these can behave as decoupled monolayers.8,9 Despite
the rather small interlayer distance (of the order of a few
Angstroms), separate control of carrier densities and mobilities
has been demonstrated.9 (See also Ref. 10 for a somewhat
similar situation in which two ordinary two-dimensional
electron gases give rise to coupled quantum Hall edge states
in corner-overgrown heterostructures.)

In this article we study transport in a graphene fold
subjected to the presence of an externally applied magnetic
field. We fully take into account the impact of deformations in
the region of the fold, which give rise to local gauge fields. We
demonstrate that the interplay between the external magnetic
field and the fold-induced gauge fields leads to the generation
of peculiar chiral electronic modes which propagate parallel to
the fold. As a result, pronounced quantum interference effects
can be observed in this system because of the magnetic flux
enclosed between the different paths of these chiral modes. The
device allows for the controlled splitting of electronic current
paths, opening the way for new graphene-based multiterminal
(Mach-Zehnder) interferometers.11

Transport in graphene folds has already been studied by
Prada et al.12 These authors have shown that in the quantum
Hall regime electrons belonging to the “zero Landau level”
(see below) are always perfectly transmitted through the fold:

their study, however, completely neglects the role of the gauge
fields present in the region of the fold, which are responsible
for the main physical features we describe below.

The article is organized as follows. In Sec. II, we introduce
the model, derive two contributions to the gauge field generated
by the deformations at the fold, and show that peculiar chiral
edge states are induced close to the fold. In Sec. III we analyze
in great detail the edge-state configuration in the proximity of
the fold and we show how such states can enclose a finite
magnetic flux leading to interference effects. In Sec. IV we
present our main numerical results on the transport properties
of the system and show that interference indeed occurs
giving rise to pronounced oscillations in the two-terminal
conductance as a function of the external magnetic field.
Finally, our main conclusions are summarized in Sec. V.

II. MODEL SYSTEM

We consider the setup sketched in Fig. 1(a). It consists of
a graphene nanoribbon with armchair edges (AGNR), which
has been folded along a line perpendicular to its longitudinal
axis, here taken to be along the x̂ direction. We assume that
the two layers are completely decoupled8,13,14 and that they
are connected only through the region of the fold. Under these
assumptions, current injected through a lead attached to the
bottom layer, say, can be extracted from a lead attached to the
top layer after having crossed the region of the fold.

The radius of the fold R is determined by the balance
between the bending rigidity of graphene κ and the van
der Waals attraction γ between the two layers.15,16 We find
(see Appendix A) R ≈ √

κ/γ ≈ 7Å, where κ ≈ 1eV and
γ ≈ 0.022 eV×Å−2. The deformation associated with the fold
also induces a uniaxial strain along the x̂ axis, uxx ≈ γ /(λ +
2μ) ≡ ū ≈ 0.1% where λ ≈ 3 eV×Å−2 and μ ≈ 9 eV×Å−2

are the elastic Lamé coefficients of graphene. This strain
induces an intervalley gauge field,3,17 Astr

x = 0, Astr
y = βū/a ≈

1.6 × 10−3Å−1, where a is the carbon-carbon distance (a =
a0 ≈ 1.42 Å at equilibrium), β = −∂ log(t)/∂ log(a) ≈ 2 −
3, t being the hopping between π orbitals in nearest-neighbor
carbon atoms (t = t0 ≈ 3 eV at equilibrium). The curvature of
the fold hybridizes π and σ bands, leading to another contri-
bution to the gauge field,18 A

hyb
x = 0, A

hyb
y = (3εππ/8h̄vF) ×

(a/R)2 ≈ 7.2 × 10−3Å−1, where h̄vF = 3ta/2 ≈ 6.4 eV× Å
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FIG. 1. (Color online) (a) A folded graphene ribbon in a magnetic
field. (b) A topologically equivalent geometry obtained by unfolding
the ribbon. In this geometry it is clear that the magnetic field
has opposite signs in the two layers. In the region of the fold of
total length w = w+ + w− (shaded area) two copropagating snake
states (red and blue lines), which are spatially separated due to the
deformation-induced gauge field, are present. Note that to have a
finite net flux through the region of space delimited by the snake
states one needs to have w+ �= w−. (c) The low-energy dispersion
relations in the asymptotic leads and (d) in the region of the fold are
plotted as functions of Bloch momentum k (in units of π/a, a being
the appropriate lattice constant).

is the Fermi velocity multiplied by h̄, εππ = Vppπ/3 +
Vppσ /2 ≈ 3.0 eV, and Vppπ ,Vppσ are hoppings between
p orbitals in nearest carbon atoms with different orientations.
The smallness of the fold radius implies that the contribution
from orbital hybridization is dominant.

Let us now consider the folded AGNR in a perpendicular
magnetic field B = B ẑ [see Fig. 1(a)], strong enough to
quantize the single-particle spectrum into well-resolved19

Landau levels (LLs) [i.e., we assume that the magnetic length

B = √

h̄c/(eB) is much smaller than the width W of the
ribbon]. Under these conditions, the current in both layers is
carried by edge states, which are localized on opposite sides
of the sample for opposite current directions. Upon entering
the region of the fold while moving along the transport (x̂)
direction, the out-of-plane component of the magnetic field
first decreases, then becomes zero, and finally changes sign.

Since we are neglecting interlayer hopping, our folded
AGNR is topologically equivalent to an unfolded ribbon in the
presence of a magnetic field step, as illustrated in Fig. 1(b).
Let us now imagine injecting the current from left to right. In
this case, the current which is first carried by edge states near
the bottom edge of the left layer will have to be carried, after
crossing the fold, by edge states on the top edge of the right
layer. At low energies (more precisely, at energies below the
first LL plateau), only one edge state is involved in carrying

this current. In the following we will restrict ourselves to this
low-energy “one-channel” regime. Figure 1(c) shows a zoom
of the dispersion relation E = E(kx) of an ideal AGNR in
the presence of a quantizing magnetic field. Only the first few
low-energy subbands forming the zeroth and the first LLs have
been plotted. Note that at sufficiently large values of |kx | these
subbands become dispersive giving rise to the aforementioned
quantum-Hall edge states.

Within (or in the proximity of) the region of the fold, a pair
of transverse edge modes which live parallel to the axis of
the fold (the ŷ axis) are induced by the change of sign of the
magnetic field. These states are depicted by vertical blue and
red lines in Fig. 1(b). Their existence can be understood within
a simple semiclassical picture. Similarly to what happens at
the sample edges, skipping orbits form in each separate layer
close to the B| − B interface. These pair of skipping orbits
living on the opposite sides of the interface merge together in
a pair of so-called “snake states”.20 In an ideal, flat, B| − B
interface these two snake states are spatially superimposed
and centered on the interface (which we define it to be the line
where the B field vanishes).

The effect of the gauge field in the region of the fold is of
paramount importance. It shifts the value of the momentum,
and, as a result, it changes the position of the LL guiding
center. The effective magnetic field has opposite sign for the
two valleys, and is maximal in the armchair configuration,
while it is zero in the zigzag case. In Sec. III we analyze in
detail the edge-state configuration in the proximity of the fold
and the eigenfunctions corresponding to the states depicted in
Fig. 1(d).

III. SNAKE STATES

To understand better the nature of the snake states in
the proximity of a B| − B interface in the presence of
deformations, we introduce an “auxiliary system” consisting
of a B| − B interface infinitely extended along the ŷ direction
and of finite length wtot along the x̂ direction (see Fig. 2). We
assume that a finite deformation-induced gauge field is present
in a strip of total length w = w+ + w− � wtot. By looking at
the spectrum E(ky) (Bloch momentum ky is a good quantum
number because the auxiliary-system interface is infinitely
extended along the ŷ direction) and at the eigenstates of this
auxiliary system we can deduce some quantitative information
about the snake states along the ŷ direction in our system,
which has instead a finite transverse width.

Performing analytical calculations based on the contin-
uum model and numerical ones based on a tight-binding
Hamiltonian, we can determine the band structure of such
auxiliary system. Figure 1(d) shows a low-energy zoom of the
dispersion relation E(ky) as a function of the Bloch momentum
ky parallel to the B| − B interface. We have selected only
the Brillouin-zone portions related to the snake states we are
interested in. We immediately observe that the existence of two
adjacent regions with opposite magnetic fields modifies the
usual LL structure of an ideal ribbon [Fig. 1(c)] by introducing
new dispersive branches which correspond to snake modes
propagating along the interface. The presence of the gauge
field has a crucial role in breaking the symmetry between the
two valleys, as it generates a downward bending in the first LL
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FIG. 2. (Color online) Sketch of the “auxiliary system.” It consists
of a B| − B interface infinitely extended along the ŷ direction
and of finite length wtot along the x̂ direction. We assume that a
finite deformation-induced gauge field is present in a strip of total
length w = w+ + w−, with w+ �= w−. This is realized by changing
the hopping parameter t along the x̂ direction with respect to its
equilibrium value t0. In the region of width w+ (w−) the scalar
product between the magnetic field and the oriented normal is positive
(negative).

subband of the K valley, say, without modifying the same LL
in the K ′ valley.

In Figs. 3 and 4 we present the numerical results for
the auxiliary system eigenfunctions [for clarity, in Fig. 3(a)
we show again the dispersion curve presented in Fig. 1(d)].
Figures 3(b) through (d) illustrate two-dimensional color plots
of the envelope-function profile ψky

(x) as a function of the
Bloch momentum ky and of the coordinate x along the
transport direction, for the three types of snake states we are
considering. More precisely, Fig. 3(b) shows the wave function
belonging to the K ′ valley. For 0.55 � kya/π � 0.75 we have
a standard zero-LL edge wave function whose guiding center
moves from the right side of the auxiliary system toward the

center. For larger values of ky the wave function becomes a
snake state localized close to the interface. In Fig. 3(c) we
consider instead the K valley, and we plot the wave-function
profile corresponding to the lowest-energy subband. Again,
for small values of ky we find ordinary edge states with a
guiding center that moves from the left side of the auxiliary
system toward the center. This is then converted into a snake
state which approaches the interface asymptotically. It is
crucial to observe that the “centers” of the two snake states
corresponding to the two valleys are not superimposed but are
instead displaced by a finite amount. Finally, in Fig. 3(d) we
have plotted the wave function ψky

(x) of the states belonging to
the first LL. Since this is an excited subband, the corresponding
wave functions have a node, and thus the probability amplitude
|ψky

(x)|2 presents a double-peaked structure in space, centered
around the B| − B interface.

More explicit plots of the auxiliary system eigenfunctions
are shown in Fig. 4, which contains typical one-dimensional
cuts of ψky

(x) for a fixed value of ky . More precisely, Fig. 3(a)
reports the squared modulus |ψky

(x)|2 of the A-sublattice wave
function corresponding to a snake state in the lowest-energy
subband. The spatial region where deformations are present
(here taken to be 6-nm wide) is inside the area delimited by
the two vertical lines. The position where the B field vanishes
is not shown in this plot for simplicity but lies within this
region. The value of ky chosen to make this plot corresponds
to an energy intermediate between the zero and the first LL.
As shown in Fig. 3, one of these two snake states belongs to
the K valley, while the other one belongs to the K ′ valley.
From Fig. 4(a) it is very clear that the centers of the two snake
states are slightly shifted with respect to each other by roughly
10 nm.

From theoretical estimates the spatial separation δx between
the two snake states is given by

δx ≈ min
(
Ahyb

y 
2
B,πR

)
, (1)

with A
hyb
y 
2

B ≈ 100 nm/B[T] for the parameters described
earlier. For realistic values of the magnetic field the separation
between edge states is thus of the order of the length πR

of the folded region, and the carriers near the fold are valley
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FIG. 3. (Color online) (a) A zoom of the
dispersion relation of the auxiliary system (see
main text) in the vicinity of the Dirac points.
(b) Two-dimensional color plot of the K-valley squared
wave functions |ψky

(x)|2 of the auxiliary system (only the
value of the wave function on one type of sublattice, say the
A type, is shown). In the horizontal axis the spatial position
x is shown in units of the magnetic length 
B . In the vertical
axis we plot the Bloch momentum ky parallel to the interface.
(c) Same as in (b), but for the K ′ valley. (d) Same as in
the previous panels, but for the first-excited subband, which
includes the first LL and the downward dip induced by the
gauge field (only the K valley is considered, the K ′ valley has
no dip).
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FIG. 4. (Color online) Wave functions in the B| − B interface in
the presence of deformations. (a) Probability density |ψky

(x)|2 for
the snake states residing along the B| − B interface. The horizontal
axis is a zoom around the center of the 207-nm-wide auxiliary
system, where the interface is located. Data represented by the
solid (dashed) line refer to the K (K ′) valley. The two vertical
thin lines define the deformed region within which the B → −B
transition takes place. We have chosen an intermediate energy value
in the one-channel regime, while the magnetic field is B = 10 T.
(b) Probability density |ψky

(x)|2 for the snake state belonging to the
first-excited subband [see Fig. 3(d)]. Notice that this single eigenstate
is characterized by a double-peak probability distribution, which
could generate interference effects similar to the ones occurring in an
Aharonov-Bohm ring interferometer.

polarized. This separation prevents short-range scattering from
mixing the valleys,21 unlike in other proposals to achieve
valley polarization in graphene. The number of flux quanta
in the region between the two channels, using the previous
parameters, is

Nflux ≈ ζ
(πR)WB

�0
≈ ζ

W [nm]B[T]

1800
, (2)

where ζ = |w+ − w−|/w is a dimensionless parameter defin-
ing the asymmetry of the fold [see Fig. 1(b)], �0 ≈ 4.1 ×
103 T × nm2 is the magnetic flux quantum, and we are
neglecting a factor proportional to the angle between the field
and the local orientation of the layer.

The flux in Eq. (2) allows for the operation of the device in
Fig. 1(a) as an interferometer. Incoming electrons propagating
along the bottom edge state in the left layer, say, can either
be transmitted to copropagating edge states on the right layer
or be reflected back. In both cases, the outgoing edge state
is localized on the top edge of the sample. Electrons can
move from one side to the other thanks to the existence of

the snake states discussed above. Due to the gauge field-
induced separation δx , the two snake state trajectories enclose
a finite magnetic flux, Eq. (2). If the deformed B| − B interface
provides a finite coupling between the two snake states,
the enclosed residual flux manifests itself as a phase difference
between the two quantum trajectories involving the K and K ′
interface snake states.

Another appealing possibility of interference is offered by
the snake state depicted in Fig. 4(b), which belongs to the
first subband of the K valley. As we have already pointed
out, this state presents a node close to the interface, and thus
the corresponding probability density |ψky

(x)|2 possesses a
double-peak structure. In this case thus there is no need of
an intervalley coupling mechanism to observe interference.
An incoming electron can split at the interface into a two-
path configuration, which can generate Aharonov-Bohm-type
interference analogous to the one seen in ordinary quantum
rings.

IV. NUMERICAL RESULTS

We now turn to present our main numerical results for the
differential conductance G of a folded AGNR in a strong
magnetic field and in the presence of deformations in the
region of the fold. Our calculations, which rely on the Landauer
formalism, are based on the tight-binding description and on
the recursive Green’s function technique.22

In Fig. 5 we present data for G as a function of the
applied magnetic field B. The simulated ribbon has a width
W ≈ 100 nm: for this size the quantum Hall regime is reached
at B � 10 T. The length w of the folded region, in which
the gauge field is active, is taken to be w ≈ 30 nm. We
describe the total gauge field A = Astr + Ahyb as a modulation
of the hopping parameter, although it is mostly due to the
hybridization of the π and σ bands (see Supplementary
Information). This description preserves the symmetries and
main features of the gauge field, and should not change the
results significantly. The modulation of the hoppings parallel
to the x̂ axis, δt/t0 ≡ (t − t0)/t0, varies between 3% [Fig. 5(a)]
and 10% [Fig. 5(b)]. These values are higher than those
expected in a realistic fold. They allow us to illustrate the
combined effect of gauge potentials and magnetic fields in
ribbons of widths amenable to numerical analysis. A lower
gauge field will give similar results in wider ribbons, see
Eqs. (1) and (2).

The most important results of this work are the data
represented by filled circles in Fig. 5. They clearly show an
oscillatory behavior of the conductance G as the magnetic
field is varied. We emphasize that these oscillations are only
due to the presence of a gauge field in the region of the
fold.23 To make this more evident, in Fig. 5 we have also
reported the conductance of the same B| − B interface in the
absence of deformations (filled triangles). We can clearly see
how the conductance oscillations disappear when the gauge
field is switched off. In this case, one can see that G is always
equal to the maximum conductance 2e2/h (in the one-channel
regime). This is part of a more general result: Due to symmetry
properties of the zeroth LL, a folded graphene nanoribbon
in the absence of a gauge field shows always perfect transmis-
sion when the current is carried by the zeroth edge state.12
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FIG. 5. (Color online) (a) Numerical results for the two-terminal
conductance G (in units of 2e2/h) of the device in Fig. 1(a) as a
function of the applied magnetic field (in T). In these simulations
W ≈ 100 nm and w ≈ 30 nm. The chemical potential is located at
≈100 meV above the Dirac level. The data labeled by filled (red)
circles refer to the case of a folded AGNR with a modified hopping
integral t/t0 = 0.97 along the x̂ axis in the region of the fold. The
data labeled by filled (black) triangles refer to the case of a folded
AGNR in the absence of deformations (t/t0 = 1.0 everywhere).
(b) Same as in (a) but the data labeled by filled (red) circles have
now been obtained for a larger value of δt/t0, i.e. t/t0 = 0.90.

Some comments related to the data in the presence of gauge
fields are now in order.

(1) The behavior of the conductance as a function of
the B field is roughly characterized by two quite distinct
regimes. We can identify a region of type “I,” approximately
comprised between 10 and 15 T in Fig. 5(a) and between 10 and
26 T in Fig. 5(b), and a region of type “II” for B � 15 T in
Fig. 5(a) [B � 26 T in Fig. 5(b)]. (For B � 10 T one exits the
one-channel regime.) In both regions the conductance G(B)
shows clear oscillations. In region II and for sufficiently large
values of the magnetic field the conductance changes slowly
and eventually saturates. One can show that type-II oscillations
are generated by interference between the two snake states
in Fig. 4(a), whereas type-I oscillations are caused by the
existence of the double-peaked snake state shown in Fig. 4(b).
Conductance oscillations of type II typically have a larger
amplitude than those of type I.

(2) Comparing the data in Fig. 5(b) with those in Fig. 5(a),
we notice that a smaller gauge field produces oscillations with
smaller amplitude. Moreover, for larger gauge fields the type-II
behavior is reached at larger values of the magnetic field.

G
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FIG. 6. (Color online) The conductance of an armchair folded
graphene nanoribbon with width W ≈ 100 nm. These results are for
an oblique fold (see inset) with α = 12◦. The total length of the folded
region is w = (w+ + w−) ≈ 6 nm. The chemical potential has been
set at ≈75 meV above the Dirac level. The modulation of the hopping
in the folded region is δt/t0 = 3%.

Finally, both regions are characterized by sharp antireso-
nances, which occur since the fold (where snake-states are
present) acts as a “t-stub” resonator.24

A. Numerical results for oblique folds

Above we have considered the ideal situation of a fold
orthogonal to the ribbon axis. However, the two graphene
layers of a folded graphene sheet can be found in a more
general relative angular position, specified by an angle α that
we have defined in the inset to Fig. 6. Orthogonal folds as those
studied above correspond to α = 0. In Fig. 6 we show a typical
result for the conductance as a function of the applied magnetic
field for an “oblique fold.” We clearly see how well-defined
conductance oscillations exist in this case as well.

B. Numerical results in the presence of structural disorder
at the edges

We finally study the role of structural disorder at the edges
of an armchair folded graphene nanoribbon. We implement
disorder by removing a certain number of atoms in the two
outmost rows of the ribbon. In Fig. 7 we show numerical
results for a removal probability p = 25% and two transverse
widths: W ≈ 50 nm [Fig. 7(a)] and W ≈ 100 nm [Fig. 7(b)].
These results have been obtained for two specific realizations
of disorder.

In the absence of a deformation-induced gauge field in the
folded region,12 we clearly see how the clean-system result
G = 2e2/h is spoiled by disorder (data labeled by black filled
triangles in Fig. 7). On the contrary, conductance oscillations
survive the presence of disorder, provided that the applied
magnetic field is not too large (data labeled by red filled circles
in Fig. 7).

Finally, an analysis of the role of armchair versus zigzag
boundaries is summarized in Appendix B.
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FIG. 7. (Color online) Effect of structural disorder at the edges on
the conductance oscillations through a folded graphene nanoribbon.
In both panels the removal probability is p = 25% and data
labeled by black filled triangles refer to the situation in which no
deformation-induced gauge field is present in the region of the fold.
(a) Conductance as a function of the applied magnetic field for a
nanoribbon with a width W ≈ 50 nm and w ≈ 6 nm. The chemical
potential has been set at ≈150 meV above the Dirac level and the
modulation of the hopping parameter is δt/t0 = 10%. (b) Same as in
(a) but for W ≈ 100 nm and w ≈ 10 nm. The chemical potential has
been set at ≈100 meV above the Dirac level and the modulation of the
hopping parameter is δt/t0 = 3%. The inset to panel (b) illustrates
the type of structural disorder we have considered.

V. CONCLUSIONS

In this work we have considered two-terminal conductance
measurements on a folded graphene layer in the Hall regime,
with the assumption that the two layers can be contacted
separately. We argue that the combination of magnetic field
and fold-induced gauge fields result in a peculiar edge-state
configuration in the region of the fold. Such configuration
enables interferometry experiments thanks to the finite mag-
netic flux enclosed between the two possible paths that an
electron can follow while being transmitted from one layer
to the other. By means of numerical techniques based on
the recursive Green’s function method, we corroborate our
predictions, showing that the calculated conductance oscillates
as a function of the externally applied magnetic field.

The analysis can be extended in a straightforward way to
multiterminal setups, where more complex correlations can
be monitored. The combination of flexibility and stiffness of

graphene allows for many other combinations of gauge fields
and electronic currents.
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APPENDIX A: ELASTIC STRAINS AND GAUGE FIELDS

The elastic energy of a graphene layer near a planar
configuration can be written as25

Eel =
∫

d2r
{

λ

2
[uxx(r) + uyy(r)]2

+μ
[
u2

xx(r) + u2
yy(r) + 2u2

xy(r)
]}

+ κ

2

∫
d2r[∂xxuz(r) + ∂yyuz(r)]2, (A1)

where uij is the deformation tensor defined by25

uxx = ∂xux + (∂xuz)2

2
,

uyy = ∂yuy + (∂yuz)2

2
, (A2)

uxy = ∂xuy + ∂yux

2
+ ∂xuz∂yuz

2
,

ui being atomic displacement vectors. The parameters λ ≈
3 eV×Å2 and μ ≈ 9 eV×Å2 are the Lamé coefficients of
graphene, while κ ≈ 1 eV is the bending rigidity.26 The van
der Waals attraction energy between the graphene layers is

EvdW = γ

∫
�

d2r, (A3)

where � is the contact region, which does not include the fold,
and γ ≈ 0.022 eV×Å2 is the van der Waals interaction.27

To a first approximation, the radius of the fold R is
determined by the balance between the bending rigidity and
the van der Waals interaction.15 Approximating the fold by
half a cylinder of radius R we find

R ≈
√

κ

γ
≈ 7 Å. (A4)

The presence of a substrate and the finite separation between
the layers, d ≈ 3.3 Å, tend to increase this value and make the
shape asymmetric. The distribution of curvatures and strains
(see below) will become inhomogeneous and asymmetric as
well.
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G
2e2

h

FIG. 8. (Color online) Conductance of a folded graphene nanorib-
bon with zigzag edges along the transport (x̂) direction (red filled
circles). The parameters used to produce this plot are W ≈ 100 nm,
w ≈ 20 nm, and δt/t0 = 10%. The chemical potential is located at
≈100 meV above the Dirac level. For the sake of comparison we
have also reported data for an identical ribbon with armchair edges.
It is evident that in the case of zigzag edges no regular and distinct
oscillations are present, the conductance being almost always equal
to unity apart from some antiresonances.

Now, the bending energy is reduced by an expansion of
the half cylinder, which leads to in-plane strains. Assuming a
constant uniaxial strain u we find

Eel(R) = πRκ

R2(1 + u)
+ πR(λ + 2μ)u2

2
. (A5)

Minimizing this expression with respect to u and using
Eq. (A4), we finally find

u ≈ κ

(λ + 2μ)R2
≈ γ

(λ + 2μ)
≡ ū ≈ 1.0 × 10−3. (A6)

A similar result has been found for carbon nanotubes.28 In the
folded region, this strain leads to a constant gauge field3,17,29

⎧⎨
⎩

Astr
x = 0

Astr
y ≡ βū

a
≈ 1.4 × 10−3 Å

−1 , (A7)

where a is the distance between nearest neighbors in the
graphene lattice (a = a0 ≈ 1.42 Å at equilibrium), β =
−∂ log(t)/∂ log(a) ≈ 2–3, and t is the hopping between
π orbitals in nearest neighbor atoms (t = t0 ≈ 3 eV at equi-
librium). This situation has been considered in Ref. 30. In the
absence of a magnetic field, the transmission can be calculated
analytically.

The bending of the layer induces the hybridization of π and
σ orbitals, and the emergence of a new contribution to the total
gauge field, not related to strains.18 Its value is⎧⎪⎨

⎪⎩
A

hyb
x = 0

Ahyb
y ≡ 3εππ

8h̄vF

a2

R2
≈ 7.2 × 10−3 Å

−1 , (A8)

where vF is the Fermi velocity, h̄vF = 3ta/2 ≈ 6.4 eV × Å,
and εππ = (Vppσ /2 + Vppπ/3) ≈ 3.0 eV, Vppπ and Vppσ

being the two possible hopping integrals between p orbitals in
neighboring carbon atoms. Due to the smallness of the radius
of the fold, the contribution from the hybridization in Eq. (A8)
is roughly one order of magnitude larger than the one due to
strains, given in Eq. (A7). It is equivalent to a relative change
of the value of the hopping t of 1% (taking β = 2).

APPENDIX B: INFLUENCE OF LATTICE ORIENTATION

As already shown in Fig. 6 of the main text, the conductance
oscillations discussed above are absent when the gauge field
is switched off. Our results then are similar to those reported
in Ref. 12 (see black filled triangles in Fig. 6 of the main text).

A similar disappearance of the oscillations occurs also if
the orientation of the lattice with respect to the fold axis is
rotated by 90◦ (zigzag edges along the transport direction). The
gauge field in this case is A = A(x)x̂ ∝ �(w/2 − |x|)x̂. Such
a pseudovector potential has zero curl (i.e., it can be gauged
away). We thus expect that the oscillations disappear in this
case: This is indeed confirmed by our numerical calculations,
as illustrated in Fig. 8. It is interesting to note that the gauge
transformation is applicable only to the effect of the gauge
field on the electronic wave functions. The lattice deforma-
tions which originate the gauge field, obviously, cannot be
canceled.
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