8,380 research outputs found

    A new method to find the potential center of N-body systems

    Get PDF
    We present a new and fast method to nd the potential center of an N-body distribution. The method uses an iterative algorithm which exploits the fact that the gradient of the potential is null at its center: it uses a smoothing radius to avoid getting trapped in secondary minima. We have tested this method on several random realizations of King models (in which the numerical computation of this center is rather dicult, due to the constant density within their cores), and com- pared its performance and accuracy against a more straightforward, but computer intensive method, based on cartesian meshes of increasing spatial resolution. In all cases, both methods converged to the same center, within the mesh resolution, but the new method is two orders of magnitude faster. We have also tested the method with one astronomical problem: the evolu- tion of a 105 particle King model orbiting around a xed potential that represents our Galaxy. We used a spherical harmonics expansion N-body code, in which the potential center determination is crucial for the correct force computation. We compared this simulation with another one in which a method previously used to determine the expansion center is employed (White 1983). Our routine gives better results in energy conservation and mass loss.Fil: Aguilar, L. A.. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: Cruz, F.. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: Carpintero, Daniel Diego. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentin

    High Angular Resolution Observations of the Collimated Jet Source Associated with a Massive Protostar in IRAS 16547-4247

    Full text link
    A triple radio source recently detected in association with the luminous infrared source IRAS 16547-4247 has been studied with high angular resolution and high sensitivity with the Very Large Array at 3.6 and 2 cm. Our observations confirm the interpretation that the central object is a thermal radio jet, while the two outer lobes are most probably heavily obscured HH objects. The thermal radio jet is resolved angularly for the first time and found to align closely with the outer lobes. The opening angle of the thermal jet is estimated to be 25\sim 25^\circ, confirming that collimated outflows can also be present in massive protostars. The proper motions of the outer lobes should be measurable over timescales of a few years. Several fainter sources detected in the region are most probably associated with other stars in a young cluster.Comment: 9 pages, 2 figure

    Isotropic Wavelets: a Powerful Tool to Extract Point Sources from CMB Maps

    Full text link
    It is the aim of this paper to introduce the use of isotropic wavelets to detect and determine the flux of point sources appearing in CMB maps. The most suited wavelet to detect point sources filtered with a Gaussian beam is the Mexican Hat. An analytical expression of the wavelet coefficient obtained in the presence of a point source is provided and used in the detection and flux estimation methods presented. For illustration the method is applied to two simulations (assuming Planck Mission characteristics) dominated by CMB (100 GHz) and dust (857 GHz) as these will be the two signals dominating at low and high frequency respectively in the Planck channels. We are able to detect bright sources above 1.58 Jy at 857 GHz (82% of all sources) and above 0.36 Jy at 100 GHz (100% of all) with errors in the flux estimation below 25%. The main advantage of this method is that nothing has to be assumed about the underlying field, i.e. about the nature and properties of the signal plus noise present in the maps. This is not the case in the detection method presented by Tegmark and Oliveira-Costa 1998. Both methods are compared producing similar results.Comment: 6 pages. Accepted for publication in MNRA

    Exploring the population genetic consequences of the colonization process with spatio-temporally explicit models: insights from coupled ecological, demographic and genetic models in montane grasshoppers

    Full text link
    Understanding the genetic consequences of shifting species distributions is critical for evaluating the impact of climate-induced distributional changes. However, the demographic expansion associated with the colonization process typically takes place across a heterogeneous environment, with population sizes and migration rates varying across the landscape. Here we describe an approach for coupling ecological-niche models (ENMs) with demographic and genetic models to explore the genetic consequences of distributional shifts across a heterogeneous landscape. Analyses of a flightless grasshopper from the sky islands of the Rocky Mountains of North America are used to show how biologically informed predictions can be generated about the genetic consequences of a colonization process across a spatially and temporally heterogeneous landscape (i.e. the suitability of habitats for the montane species differs across the landscape and is itself not static, with the displacement of contemporary populations into glacial refugia). By using (i) ENMs for current climatic conditions and the last glacial maximum to (ii) parameterize a demographic model of the colonization process, which then (iii) informs coalescent simulations, a set of models can be generated that capture different processes associated with distributional shifts. We discuss how the proposed approach for model generation can be integrated into a statistical framework for estimating key demographic parameters and testing hypotheses about the conditions for which distributional shifts may (or may not) enhance species divergence, including the importance of habitat stability, past gene-flow among currently isolated populations, and maintenance of refugial populations in multiple geographic regions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79315/1/MEC_4702_sm_Supplemental-Tables.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/79315/2/j.1365-294X.2010.04702.x.pd

    Localized versus generalist phenotypes in a broadly distributed tropical mammal: how is intraspecific variation distributed across disparate environments?

    Full text link
    Abstract Background The extent of phenotypic differentiation in response to local environmental conditions is a key component of species adaptation and persistence. Understanding the structuring of phenotypic diversity in response to local environmental pressures can provide important insights into species evolutionary dynamics and responses to environmental change. This work examines the influence of steep environmental gradients on intraspecific phenotypic variation and tests two hypotheses about how the tropical soft grass mouse, Akodon mollis (Cricetidae, Rodentia), contends with the disparate environmental conditions encompassed by its broad distribution. Specifically, we test if the species expresses a geographically unstructured, or generalist, phenotype throughout its range or if it shows geographically localized morphological differentiation across disparate environments. Results Using geometric morphometric and ecomorphological analyses of skull shape variation we found that despite distinct environmental conditions, geographically structured morphological variation is limited, with the notable exception of a distinct morphological disjunction at the high-elevation forest-grassland transition in the southern portion of A. mollis distribution. Based on genetic analyses, geographic isolation alone does not explain this localized phenotype, given that similar levels of genetic differentiation were also observed among individuals inhabiting other ecosystems that are nonetheless not distinct morphologically. Conclusions Instead of phenotypic specialization across environments in these tropical mountains, there was limited differentiation of skull shape and size across the broad range of A. mollis, with the exception of individuals from the puna, the highest-elevation ecosystem. The high morphological variance among individuals, together with a weak association with local environmental conditions, not only highlights the flexibility of A. mollis’ skull, but also highlights the need for further study to understand what maintains the observed morphological patterns. The work also indicates that mechanisms other than processes linked to local ecological specialization as a driver of diversification may contribute to the high diversity of this tropical region.http://deepblue.lib.umich.edu/bitstream/2027.42/116600/1/12862_2012_Article_2395.pd

    In search for natural wormholes

    Get PDF
    We have investigated 631 time profiles of gamma ray bursts from the BATSE database searching for observable signatures produced by microlensing events related to natural wormholes. The results of this first search of topologically nontrivial objects in the Universe can be used to constrain their number and mass.Comment: Mod. Phys. Lett. A. (in press) Latex (revtex style) with no figure

    Conicoid Mirrors

    Get PDF
    The first order equation relating object and image location for a mirror of arbitrary conic-sectional shape is derived. It is also shown that the parabolic reflecting surface is the only one free of aberration and only in the limiting case of distant sources.Comment: 9 page

    A new method to find the potential center of <i>N</i>-body systems

    Get PDF
    We present a new and fast method to nd the potential center of an N-body distribution. The method uses an iterative algorithm which exploits the fact that the gradient of the potential is null at its center: it uses a smoothing radius to avoid getting trapped in secondary minima. We have tested this method on several random realizations of King models (in which the numerical computation of this center is rather dicult, due to the constant density within their cores), and compared its performance and accuracy against a more straightforward, but computer intensive method, based on cartesian meshes of increasing spatial resolution. In all cases, both methods converged to the same center, within the mesh resolution, but the new method is two orders of magnitude faster. We have also tested the method with one astronomical problem: the evolution of a 105 particle King model orbiting around a xed potential that represents our Galaxy. We used a spherical harmonics expansion N-body code, in which the potential center determination is crucial for the correct force computation. We compared this simulation with another one in which a method previously used to determine the expansion center is employed (White 1983). Our routine gives better results in energy conservation and mass loss.Se presenta un método rápido para encontrar el centro del potencial de una distribución de N-cuerpos. El método usa un algoritmo iterativo que aprovecha el hecho de que el gradiente del potencial es nulo en su centro; emplea asimismo un radio de suavizado para evitar quedar atrapado en mínimos locales. Se ha probado el método con modelos de King (cuyos núcleos, de densidad relativamente constante, hacen particularmente difícil la determinación numérica de este centro), y se ha comparado su eficiencia y precisión con un método más directo, aunque de cálculo intensivo, basado en mallas cartesianas de resolución espacial creciente. En todos los casos, ambos métodos convergen al mismo centro dentro de la resolución de la malla, aunque el método iterativo es dos órdenes de magnitud más rápido. Utilizamos este método en un problema astronómico: la evolución de un modelo de King de 105 partículas, en órbita alrededor de un potencial fijo representativo de nuestra Galaxia. Se utilizó un código de N-cuerpos con expansión en armónicos esféricos, en el que la determinación del centro del potencial es esencial para un cálculo correcto de las fuerzas. Se comparó esta simulación con el mismo código pero con un método empleado anteriormente para determinar el centro de expansión (White 1983). Con nuestra rutina se obtienen mejores resultados en la conservación de energía y de la masa.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    A new method to find the potential center of <i>N</i>-body systems

    Get PDF
    We present a new and fast method to nd the potential center of an N-body distribution. The method uses an iterative algorithm which exploits the fact that the gradient of the potential is null at its center: it uses a smoothing radius to avoid getting trapped in secondary minima. We have tested this method on several random realizations of King models (in which the numerical computation of this center is rather dicult, due to the constant density within their cores), and compared its performance and accuracy against a more straightforward, but computer intensive method, based on cartesian meshes of increasing spatial resolution. In all cases, both methods converged to the same center, within the mesh resolution, but the new method is two orders of magnitude faster. We have also tested the method with one astronomical problem: the evolution of a 105 particle King model orbiting around a xed potential that represents our Galaxy. We used a spherical harmonics expansion N-body code, in which the potential center determination is crucial for the correct force computation. We compared this simulation with another one in which a method previously used to determine the expansion center is employed (White 1983). Our routine gives better results in energy conservation and mass loss.Se presenta un método rápido para encontrar el centro del potencial de una distribución de N-cuerpos. El método usa un algoritmo iterativo que aprovecha el hecho de que el gradiente del potencial es nulo en su centro; emplea asimismo un radio de suavizado para evitar quedar atrapado en mínimos locales. Se ha probado el método con modelos de King (cuyos núcleos, de densidad relativamente constante, hacen particularmente difícil la determinación numérica de este centro), y se ha comparado su eficiencia y precisión con un método más directo, aunque de cálculo intensivo, basado en mallas cartesianas de resolución espacial creciente. En todos los casos, ambos métodos convergen al mismo centro dentro de la resolución de la malla, aunque el método iterativo es dos órdenes de magnitud más rápido. Utilizamos este método en un problema astronómico: la evolución de un modelo de King de 105 partículas, en órbita alrededor de un potencial fijo representativo de nuestra Galaxia. Se utilizó un código de N-cuerpos con expansión en armónicos esféricos, en el que la determinación del centro del potencial es esencial para un cálculo correcto de las fuerzas. Se comparó esta simulación con el mismo código pero con un método empleado anteriormente para determinar el centro de expansión (White 1983). Con nuestra rutina se obtienen mejores resultados en la conservación de energía y de la masa.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat
    corecore