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RESUMEN

Se presenta un método rápido para encontrar el centro del potencial de una
distribución de N-cuerpos. El método usa un algoritmo iterativo que aprovecha
el hecho de que el gradiente del potencial es nulo en su centro; emplea asimismo
un radio de suavizado para evitar quedar atrapado en mı́nimos locales. Se ha
probado el método con modelos de King (cuyos núcleos, de densidad relativamente
constante, hacen particularmente dif́ıcil la determinación numérica de este centro),
y se ha comparado su eficiencia y precisión con un método más directo, aunque de
cálculo intensivo, basado en mallas cartesianas de resolución espacial creciente. En
todos los casos, ambos métodos convergen al mismo centro dentro de la resolución
de la malla, aunque el método iterativo es dos órdenes de magnitud más rápido.

Utilizamos este método en un problema astronómico: la evolución de un mod-
elo de King de 105 part́ıculas, en órbita alrededor de un potencial fijo representativo
de nuestra Galaxia. Se utilizó un código de N-cuerpos con expansión en armónicos
esféricos, en el que la determinación del centro del potencial es esencial para un
cálculo correcto de las fuerzas. Se comparó esta simulación con el mismo código
pero con un método empleado anteriormente para determinar el centro de expansión
(White 1983). Con nuestra rutina se obtienen mejores resultados en la conservación
de enerǵıa y de la masa.

ABSTRACT

We present a new and fast method to find the potential center of an N-body
distribution. The method uses an iterative algorithm which exploits the fact that
the gradient of the potential is null at its center: it uses a smoothing radius to
avoid getting trapped in secondary minima. We have tested this method on several
random realizations of King models (in which the numerical computation of this
center is rather difficult, due to the constant density within their cores), and com-
pared its performance and accuracy against a more straightforward, but computer
intensive method, based on cartesian meshes of increasing spatial resolution. In all
cases, both methods converged to the same center, within the mesh resolution, but
the new method is two orders of magnitude faster.

We have also tested the method with one astronomical problem: the evolu-
tion of a 105 particle King model orbiting around a fixed potential that represents
our Galaxy. We used a spherical harmonics expansion N-body code, in which the
potential center determination is crucial for the correct force computation. We
compared this simulation with another one in which a method previously used to
determine the expansion center is employed (White 1983). Our routine gives better
results in energy conservation and mass loss.
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1. INTRODUCTION

An important class of N-body simulation tech-
niques relies on a potential representation by means
of an expansion in harmonic functions suitable to
the global symmetry of the model (Clutton-Brock
1973; Villumsen 1982; McGlynn 1984; Syer 1995).
Harmonic expansion codes have been used to sim-
ulate N-body system dynamics like the dynamical
friction on satellite systems (White 1983), the sta-
bility of spherical galaxies (Merritt & Aguilar 1985),
the evolution of cold spherical collapses (Villumsen
1984; Aguilar & Merritt 1990), and galaxy merg-
ers (Villumsen 1982). The accurate determination
of the potential center for the harmonic expansion is
of paramount importance to get good energy conser-
vation and the correct simulation of the dynamics.
Some authors have used the center of mass of a sub-
set of the system (Villumsen 1982), others a weighted
center of mass (McGlynn 1984) and yet others have
used a “live” particle (i.e., a dynamical moving parti-
cle originally in the center of the system, White 1983)
to anchor the center of the harmonic expansion. A
fixed expansion center is not suitable for situations
where the N-body system moves as a whole. The use
of the center of mass as the center of the potential
is inherently problematic, as the former is most af-
fected by particles at large distance from the center
while the latter is not; this has compelled some au-
thors to use the center of mass of just the fraction of
the system that is most bound. The last approach—
the use of an active particle to designate the center
of the expansion—requires the use of additional soft-
ening to dampen the irregular motion of the marker
(White 1983). One additional consideration is that
most of the simulated systems in the quoted refer-
ences have a density distribution with a central cusp
(e.g., a de Vaucouleurs profile) which eases the dif-
ficulty of locating the appropriate center for the ex-
pansion. The use of a model with a flatter core, like
a King model, makes the problem much harder and
it has not been investigated in the past.

These difficulties have motivated us to seek an
alternative, in the form of a fast algorithm that can
locate the center of the potential with good accu-
racy, within the finite spatial resolution imposed by
the discreteness of the N-body distribution. In § 2
we describe the method and its optimization. In
§ 3 we present results of tests in which the poten-
tial center has been determined with the proposed
method and with a more computer intensive method
that relies on the evaluation of the potential at
Cartesian meshes of increasing spatial resolution. In
§ 4 we apply our new method to one astronomical

Fig. 1. Logarithmic median separation rdif , between the
potential centers found with the iterative method and
with the mesh method, versus the softening parameter
ε. Both are shown in units of the mean particle separa-
tion l, within the half-mass radius. Each line corresponds
to a different 105 particle random realization of the same
King model. Each point represents the median of an en-
semble of 1,000 experiments made at a fixed softening,
but with different random starting points, for the iter-
ative method. The error bars indicate the interquartile
span of the distribution.

problem: the evolution of a globular cluster in a
fixed galactic potential using a spherical harmonics
expansion code, and compare these results with
the live particle method. Finally we compare the
performance of this code with a tree code.

2. METHOD

The potential Φ at a point r due to a collection
of N softened particles is given by

Φ(r) = −G

N∑

i=1

mi

[(ri − r)2 + ε2]1/2
, (1)

where mi and ri are the mass and position of the ith

particle, respectively, ε is the softening length, and
G is the gravitational constant.

The critical points rc of the function Φ(r), de-
fined by the condition

∇Φ(rc) = 0, (2)
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POTENTIAL CENTER 227

Fig. 2. Logarithmic median separation rdif , between the potential center found with our method and that obtained
with the mesh method, in units of the mean inter-particle separation l, inside the half mass ratio, versus the fraction
Nf/N of particles used in the iterative method. The panels correspond to King models with concentration parameters
(a) c = 1.5 and (b) c = 1 . Each line corresponds to experiments with different initial random realizations for each
concentration. The error bars correspond to the interquatilic intervals for the 25% and the 75% of the distribution. The
dashed line show the corresponding value of Nf /N for the core radius for this realizations.

include all maxima, minima and saddle points of Φ.
It is clear that, at every ri, we have a (local) mini-
mum of Φ. (In fact, were it not for the softening pa-
rameter, we would have a pole at every ri.) Besides
these minima, the function Φ will have an overall
concave shape with its own global minimum, r∗c , due
to the entire set of particles. The latter is the center

of the potential, i.e., the critical point searched for—
we do not expect global maxima or saddle points
unless Coriolis accelerations are present. It is worth
noting that the global minimum is not necessarily an
absolute minimum, since the bottom of the well of a
particle may be lower than r∗c .

Let us solve first for any critical point; we will
narrow down the search later to the r∗c . Combining
equations (1) and (2), we have

N∑

i=1

mi(ri − rc)

[(ri − rc)2 + ε2]3/2
= 0. (3)

Since this equation cannot be solved analytically for
the critical points rc, we revert to a numerical solu-

tion. To this end, we rewrite the last equation as

rc =

N∑

i=1

miri

[(ri − rc)
2 + ε2]3/2

N∑

i=1

mi

[(ri − rc)
2 + ε2]3/2

. (4)

This equation allows us to compute rc by iteration.
To avoid being trapped in an undesired local min-

imum, and to drive the iteration to r∗c , we may in-
crease the softening parameter ε. It is clear that, the
greater the softening parameter, the shallower the in-
dividual wells, and the less probability of ending up
in one of them.

This, however, has its cost: the increase of ε will
also yield a shallower overall potential, resulting in
a higher global minimum (the limiting case being
ε → ∞, with no individual wells, but also no po-
tential at all!) Nevertheless, the global potential be-
comes shallow at a rate that is always less than those
individual minima, so we can safely increase ε up to
a certain amount to avoid getting trapped.

Besides these considerations, we want the algo-
rithm to be fast. To this end, we can take advantage
of the fact that the contribution to the potential from
particles lying far away from the center of the system
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228 CRUZ, AGUILAR, & CARPINTERO

is small. Thus, we may remove these particles from
the computation without affecting noticeably the po-
sition of the potential center. This can be achieved
by simply reordering the particles in ascending order
from nearest to farthest from one initial central posi-
tion, and performing the summations in equation (4)
up to a certain Nf , the new total number of particles
to be considered.

Finally, we introduce a convergence criterion η
defined as

η ≡ |rk−1

c − rk
c | , (5)

where rk−1
c and rk

c are sequentially computed values
for r∗c . When the desired convergence is achieved the
iteration is stopped.

To optimize the algorithm, we need to find the
best values for the three parameters Nf , ε, and η. To
this end, we performed extensive numerical experi-
ments, comparing the results of our method with the
potential center computed by directly interpolating
in a cubic mesh. To improve the precision of the
latter method, we first used a low resolution mesh
to find an approximate minimum of the potential;
then, centered on this position, we put a higher res-
olution mesh and repeated the process several times.
The resolution of the last mesh was 0.001 times the
mean inter-particle separation l inside the half mass
radius of the distribution. We show the results of
these experiments in the next section.

3. RESULTS

The first parameter we tune is ε, used to avoid
getting trapped in local minima. We arbitrarily set
the other two parameters to be η = 10−3 and Nf/N
= 0.5; we show below that these values represent a
good choice. Figure 1 shows the results obtained,
gauged by the discrepancy between the iterative and
the mesh methods as a function of softening. The
discrepancy is measured by the distance between the
potential centers found by the iterative and the mesh
methods rdif , in units of the mean particle separa-
tion within the half-mass radius l. Each line corre-
sponds to experiments with a different 105 particles
random realization of a King model of concentration
c = 1.5. For each one, we have tested our procedure
at softenings in the range 1 ≤ ε/l ≤ 30. At each
softening we have tried the iterative method 1000
times starting from different random initial points.
The dot at each softening value marks the median
of the ensemble distribution and the error bar its in-
terquartile range. We see that softenings in the range
10 ≤ ε/l ≤ 20 are optimal, with differences among
random realizations being dominant. The agreement

Fig. 3. Cumulative function of rdif/l for three realizations
of a King model with c = 1.5. The thick lines correspond
to the experiments with η = 10−4; the thin lines to η =
10−3.

Fig. 4. (a) Number of iterations as a function of the
convergence criterion η. Each point corresponds to the
mean of 1000 different computations of the potential cen-
ter for a King model with c = 1.5. (b) Discrepancy rdif/l
between the iterative and mesh method, as a function of
η, for the same set of experiments as in (a).
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between the iterative method and the mesh method,
used as our control, is better than 0.1l in this region.
From now on, we fix the softening at ε = 15 l.

For the number of particles used in the iterative
method, Nf , we have done a similar series of exper-
iments as with ε, but using two King models with
concentrations of c = 1.5 and 1.0. The results are
shown in Figure 2. Again, three random realizations
were used and an ensemble of 1000 experiments were
done for each Nf . The starting points for each ex-
periment were chosen randomly from the region de-
fined by [rh, 5 rh], with rh the half-mass radius of the
system (i.e., the starting points were well outside the
core of the system). We see that the coincidence with
our control method improves as more of the cluster
is included, but with a weak dependence. We settled
on a value of Nf/N = 0.40.

In order to assess the effect of the convergence cri-
terion η, we performed 104 computations of rdif/l in
the c = 1.5 King model, each with a different start-
ing point chosen from the interval [rh, 5rh]; we then
arranged the resulting values in ascending order and
formed the corresponding cumulative function. Fig-
ure 3 shows this cumulative function for two values
of η. We can see that 80% of the results fall inside
0.05 l for η = 10−4, and 70% of the results fall inside
0.08 l for η = 10−3. We conclude that any value in
this range would be a suitable choice for η.

For a further tuning of the parameter η, which
controls when the iterative method should stop at
the desired accuracy, we must find a balanced choice
between precision and computing time. Figure 4a
shows the mean number of iterations required to
reach a desired convergence η. As expected, the
number of iterations grows as η decreases. It is
worth noting that the number of iterations is very
low, ranging from 2 to 7 when η takes values between
10−1 and 10−5. However, we note that changing η
from 10−3 to 10−4 yields an increase from 3 to 5 in
the number of iterations, i.e., a code 60% more ex-
pensive in time. On the other hand, Figure 4b shows
the achieved accuracy rdif/l as a function of the con-
vergence criterion, η. We can see that shifting from
η = 10−3 to η = 10−4 increases the accuracy a mere
30%, as compared with a 60% degraded performance
in time.

From the previous results we conclude that
10−4 < η < 10−3, Nf ≥ 0.4N , and ε ≥ 15l are
good choices for the three parameters involved for
these particular N-body models (King Models with
105 particles).

4. AN ASTRONOMICAL PROBLEM

We use our iterative algorithm in a harmonic ex-
pansion N-body code (White 1983) to follow the evo-
lution of a globular cluster in orbit in a galactic po-
tential. For a globular cluster, the determination
of the center of this expansion is difficult, because
of a central core where the density is roughly con-
stant and the corresponding potential is very shal-
low. We compared this simulation with another
one done with the same harmonic expansion code,
but using the live particle method used originally
by White (1983) and subsequently by other authors
(e.g., Aguilar & White 1985; Merritt & Aguilar 1985;
Aguilar & Merritt 1990) to find the center of expan-
sion.

In this experiment we put an N-body King model
with 105 particles and concentration c = 1.5, in a
circular orbit in the fixed galactic potential from
Bachall, Schmidt, & Soneira (1983), adapted by
Cruz (1999, e.g., § 3) to compute the force and the
potential in analytical form. We use η = 5 × 10−4,
Nf = 0.4N , and ε ' 15 l for our centering routine.

The cluster orbit is circular with a radius of 3 kpc,
and we follow it for 10 orbital periods. To avoid large
transient effects, the initial size of the cluster was
∼ 30% smaller than the Roche lobe at this galactic
radius. The simulation with our centering routine
had an energy conservation error of 0.3% and the
cluster lost 2% of its mass. The simulation with the
live particle method conserved energy within 2% and
the cluster lost 8% of the mass.

In Figure 5 we show the evolution of the La-
grangian radii corresponding to 0.1%, . . . , 0.9%, 1%,
. . . , 9%, 10%, . . . , 90%, . . . , 91% . . . , and 99% of
the mass of the globular cluster with our routine,
top panel, and for the live particle method, bottom
panel. We see that with the iterative method, the
cluster structure does not vary significantly during
the whole simulation (the radial variation of the half
mass ratio was 0.5%). On the other hand, when us-
ing the live particle method, the cluster undergoes
a large expansion just after the first orbital period
(Fig. 5b). The half mass radius of the cluster ex-
pands 36% of its original size in the first orbital pe-
riod, and continues expanding until it reaches 64%
of its original size at the end of the simulation. This
difference in the structure of the simulated cluster is
presumably the result of the errors in the location of
the expansion center by the live particle method. To
verify the role of the potential centering in these sim-
ulations, we have followed the position of this center
in both simulations. In Figure 6 we have plotted the
time evolution of the variation of the radial position
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230 CRUZ, AGUILAR, & CARPINTERO

Fig. 5. Lagrangian radii for the cluster mass in the simu-
lation with our centering routine (a), and the live parti-
cle method (b). The solid lines correspond to 0.1%, . . . ,
0.9%, the dashed lines to 1%, . . . , 9%, the dashed and
dotted lines to 10%, . . . , 50% (thick line), . . . , 90%, and
the dotted lines to 91%, . . . , 99% of the mass.

of the expansion center with respect to the galactic
center for our routine, top panel, and for the live

particle method, bottom panel. In Fig. 6a the maxi-
mum variation of the position of the center is 0.01%
from the original position. This is dominated by ran-
dom fluctuations with only a small secular deviation.
Instead, in Fig. 6b we can see that the oscillation of
the live particle is one order of magnitude larger than
in the previous case, and also note an increase of the
amplitude of this oscillation during the last orbital
periods. In particular, the first expansion seen in
Fig. 5b is associated with the large oscillation in the
live particle (Fig. 6b), before the first orbital period.

From these figures we conclude that the struc-
tural evolution of the cluster in our N-body simula-
tion has a strong dependence on the correct choice
of the center of expansion for the spherical harmonic
code. If we want to study the evolution of a globu-
lar cluster due to the tidal field of the Galaxy, our
method of finding the center of expansion results in
a significant improvement, and ensures that the en-
ergy and mass variations in the cluster correspond
to dynamical effects and not to numerical errors.

Finally, we followed the evolution of this cluster
with the N-body code GADGET (Springer, Yoshida, &

Fig. 6. Orbital variation for the same simulations of
Fig. 5. In (a) we show the radial variation of the center
of the potential with respect to the initial position when
using our iterative method. In (b) we show the radial
variation of the position of the live particle. Notice than
in this case the y-axis is one order of magnitude larger
than in (a).

White 2001), in order to compare the performance
of our code with a tree-type code, one of the most
frequently used codes in the literature. We found
that the tree code is 24 times more expensive in CPU
time than the harmonic expansion code, at the same
energy conservation. The cluster structure shows the
same variation and mass loss in both simulations. In
a situation like the one modeled here, where the N-
body system retains its overall symmetry, it is clear
that a harmonic expansion code with our centering
routine is a more efficient simulation tool than a tree
code.

5. CONCLUSIONS

We have presented a new method to find the
potential center of an N-body distribution. This
method has three parameters, which are easy to set
for any stellar system, and they allow us to improve
the accuracy and reduce the computational cost.
The performance of this routine was found to be su-
perior to that of the live particle method used by
other authors to find the center of the potential. We
followed the evolution of a globular cluster for 18,270
time steps, obtaining an energy conservation of 0.3%,
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whereas in previous works, in which a spherical har-
monics expansion was used, an integration spanning
2000 time steps yielded an energy conservation of 3%
(Villumsen 1982); another integration spanning 800
time steps yielded an energy conservation of 1% (Vil-
lumsen 1984), and yet another, spanning 2000 time
steps, yielded an energy conservation of 1% (Aguilar
& Merritt 1990). Although we cannot directly com-
pare these simulations with our results, they give us
an idea of the performance of our code as compared
with other methods. Furthermore, considering that
a King model was used in our simulations—a model
with a flat core and therefore with a potential cen-
ter rather difficult to determine—we conclude that
our routine greatly improves the N-body simulations
performed with harmonics expansion.

By using this new centering routing we can in-
crease the number of particles in N-body simulations
performed with the harmonic expansion method, al-
lowing us to explore a larger range in the initial pa-
rameters of those N-body simulations.

Luis A. Aguilar and Fidel Cruz: Instituto de Astronomı́a, UNAM, Apartado Postal 877, 22860 Ensenada,
B. C., México (aguilar, fidel@astrosen.unam.mx).

Daniel D. Carpintero: Facultad de Ciencias Astronómicas y Geof́ısicas, Universidad Nacional de La Plata,
Paseo del Bosque S/N, 1900 La Plata, Argentina (ddc@fcaglp.unlp.edu.ar).

The FORTRAN routine CENTER for computing the cen-
ter of the potential (density) in an N-body model is
available upon request from F. Cruz.
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