5 research outputs found

    Forecasting occurrence of palm weevil Rhynchophorus palmarum L. (Coleoptera, Curculionidae) using Autoregressive Integrated Moving Average modeling

    Get PDF
    Oil palm (Elaeis guineensis L.) is a crucial crop in Ecuador, considerably affected by black palm weevil Rhynchophorus palmarum L. (Coleoptera: Curculionidae) for several years. Despite its importance, the behavior of the black weevil in Ecuador is not well comprehended presently. Therefore, this study aimed to predict infestation patterns of the black palm weevil in Ecuador using a mathematical model based on monitoring data. Data on the number of insects per trap from a commercial oil palm farm in Quinindé, Ecuador, was collected every two weeks for five years (2016-2020) and analyzed using the Classical Fourier (CF) spectrum and the Dickey-Fuller test to determine seasonality. The trend component of the data dropped from 16.33 in January 2017 to 11.96 in January 2019, with a fluctuation ranging from -0.11 to 2.50 observed for the entire data set. The results obtained after fitting the model ranged from -0.11 to 3.19, with a maximum of 5.30. The augmented Dickey-Fuller (ADF) test for the black weevil time series yielded a result of -5.60 (P<0.01). The partial autocorrelation ranged from -0.35 to 0.1. Based on our model, we projected the occurrence of black palm weevil from 2021 to 2024, with a fluctuation in the number of insects per trap ranging from 12.68 in January 2021 to 13.023 in November 2023. This model can be used to predict future insect occurrences in Ecuador, providing valuable insights into the behavior of the black weevil and using it for effective development control measures for this pest

    Manipulation of Agricultural Habitats to Improve Conservation Biological Control in South America

    No full text
    International audienceStable and diversified agroecosystems provide farmers with important ecosystem services, which are unfortunately being lost at an alarming rate under the current conventional agriculture framework. Nevertheless, this concern can be tackled by using ecological intensification as an alternative strategy to recuperate ecosystem services (e.g., biological control of pests). To this end, the manipulation of agricultural habitats to enhance natural enemy conservation has been widely explored and reported in Western Europe and North America, whereas in other parts of the world, the investigation of such topic is lagging behind (e.g., South America). In this forum, we gathered published and unpublished information on the different ecological habitat management strategies that have been implemented in South America and their effects on pest control. Additionally, we identify the various challenges and analyze the outlook for the science of conservation biological control in South America. More specifically, we reviewed how different agricultural practices and habitat manipulation in South America have influenced pest management through natural enemy conservation. The main habitat manipulations reported include plant diversification (intercropping, insectary plants, agroforestry), conservation and management of non-crop vegetation, and application of artificial foods. Overall, we noticed that there is a significant discrepancy in the amount of research on conservation biological control among South American countries, and we found that, although intercropping, polycultures, and crop rotation have been reported in agroecosystems since pre-Inca times, more systematic studies are required to evaluate the true effects of habitat management to implement conservation biological control for pest control in South America

    Manipulation of Agricultural Habitats to Improve Conservation Biological Control in South America

    No full text
    corecore