15 research outputs found

    Towards water and energy self-sufficiency : a closed-loop, solar-driven, low-tech laundry pilot facility (LaundReCycle) for the reuse of laundry wastewater

    Get PDF
    In the scope of this study, a pilot facility for the recycling of laundry effluent was developed and tested. With the aim to enable nearly complete energy and water self-sufficiency, the system is powered by a photovoltaic plant with second-life batteries, treats the wastewater within the unit and constantly reuses the treated wastewater for washing in a closed cycle. The technology for wastewater treatment is based on a low-tech approach consisting of a physical/mechanical pre-treatment and biological treatment in trickling filter columns. The treatment process is operated in batch mode for a capacity of five washing cycles per day. During five weeks of operation water quality, energy consumption and production, water losses and washing performance were monitored. The system recovered 69% of the used water for the washing machine while treating the wastewater to the necessary water quality levels. The average COD removal rate per cycle was 92%. Energy analysis was based on modelled data of the monitored energy consumption. With the current set-up, an internal consumption rate of 80% and self-sufficiency of 30% were modelled. Future developments aim at increasing water and energy self-sufficiency and optimizing the water treatment efficiency

    Model-based design of horizontal subsurface flow constructed treatment wetlands: a review

    No full text
    Abstract The increasing application of constructed wetlands for wastewater treatment coupled with increasingly strict water quality standards is an ever growing incentive for the development of better process design tools. This paper reviews design models for horizontal subsurface flow constructed treatment wetlands, ranging from simple rules of thumb and regression equations, to the well-known first-order k-C Ã models, Monod-type equations and more complex dynamic, compartmental models. Especially highlighted in this review are the model constraints and parameter uncertainty. A case study has been used to demonstrate the model output variability and to unravel whether or not more complex but also less manageable models offer a significant advantage to the designer.

    Application of the gas tracer method for measuring oxygen transfer rates in subsurface flow constructed wetlands

    No full text
    5th. IWA International Young Water Professional 2010, qua atorga la International Water associationThe oxygen transfer rate (OTR) has a significant impact on the design, optimal operation and modelling of constructed wetlands treating wastewater. Oxygen consumption is very fast in wetlands and the OTR cannot be determined using an oxygen mass balance. This problem is circumvented in this study by applying the gas tracer method. Experiments were conducted in an unplanted gravel bed (dimensions L × W × d 125 × 50 × 35 cm filled with a 30-cm layer of 10–11-mm gravel) and a planted horizontal subsurface flow constructed wetland (HSSFCW) (L × W × d 110 × 70 × 38 cm filled with a 30-cm layer of 3.5-mm gravel with Phragmites australis). Tap water saturated with propane as gas tracer (pure or commercial cooking gas, depending on the test) was used. The mass transfer ratio between oxygen and commercial propane gas was quite constant and averaged R = 1.03, which is slightly lower than the value of R = 1.39 that is usually reported for pure propane. The OTR ranged from 0.31 to 5.04 g O2 m−2 d−1 in the unplanted gravel bed and from 0.3 to 3.2 g O2 m−2 d−1 in the HSSFCW, depending on the hydraulic retention time (HRT). The results of this study suggest that the OTR in HSSFCW is very low for the oxygen demand of standard wastewater and the OTR calculations based on mass balances and theoretical stoichiometric considerations overestimate OTR values by a factor that ranges from 10 to 100. The gas tracer method is a promising tool for determining OTR in constructed wetlands, with commercial gas proving to be a viable low-cost alternative for determining OTR.Peer ReviewedAward-winnin

    Laboratory- and full-scale studies on the removal of pharmaceuticals in an aerated constructed wetland: effects of aeration and hydraulic retention time on the removal efficiency and assessment of the aquatic risk

    Get PDF
    Pharmaceutical residues in wastewater pose a challenge to wastewater treatment technologies. Constructed wetlands (CWs) are common wastewater treatment systems in rural areas and they discharge often in small water courses in which the ecology can be adversely affected by the discharged pharmaceuticals. Hence, there is a need for studies aiming to improve the removal of pharmaceuticals in CWs. In this study, the performance of a full-scale aerated sub-surface flow hybrid CW treating wastewater from a healthcare facility was studied in terms of common water parameters and pharmaceutical removal. In addition, a preliminary aquatic risk assessment based on hazard quotients was performed to estimate the likelihood of adverse effects on aquatic organisms in the forest creek where this CW discharges. The (combined) effect of aeration and hydraulic retention time (HRT) was evaluated in a laboratory-scale batch experiment. Excellent removal of the targeted pharmaceuticals was obtained in the full-scale CW (>90%) and, as a result, the aquatic risk was estimated low. The removal efficiency of only a few of the targeted pharmaceuticals was found to be dependent on the applied aeration (namely gabapentin, metformin and sotalol). Longer and the HRT increased the removal of carbamazepine, diclofenac and tramadol

    Horizontal subsurface flow constructed wetlands as tertiary treatment: can they be an efficient barrier for microplastics pollution?

    Full text link
    [EN] The presence and fate of microplastics (MPs) in wastewater represent a subject of major concern, as wastewater is one of the main inputs of MPs to the environment. This study deals with the ability of horizontal subsurface-flow constructed wetlands (CWs), as tertiary treatment, to reduce the MPs concentration of secondary effluents. Different locations of a wastewater treatment plant (WWTP) including raw wastewater, CW influent and final effluent, were sampled. Macroinvertebrates were collected from the CW to evaluate their potential role in the MPs distribution along the wetland. The global WWTP efficiency for MPs removal was 98%. MPs removal efficiency by CW was on average 88%, causing a significant reduction of the MPs concentration from 6.45 to 0.77 MP/L (p 0.05). Macroinvertebrates can ingest a non-negligible quantity of MPs, with an average content of 166.2 MPs/g or 0.13 MPs/individual. Therefore, they could play a certain role in the MPs distribution inside CWs. Fiber was the most abundant shape for macroinvertebrates as well (89%), so attention should be paid to reduce their contamination at source. This study provides the first results on MPs removal in CWs as tertiary treatment and assesses the potential role of macroinvertebrates in their distribution along the CW, thus filling this gap of knowledge.Qintong Wang was financially supported by the China Scholarship Council (CSC) by a CSC PhD grant (Ref. 201906690045). Carmen Hernandez-Crespo had a "Jose Castillejo" mobility grant (CAS19/00114) from the Spanish Ministry of Science, Innovation and Universities (State Program for the Promotion of Talent and its Employability in R&D, State Mobility Subprogramme, of the State R&D Plan). The authors also thank Aquafin NV for granting access to their site.Wang, Q.; Hernández Crespo, C.; Santoni, M.; Van Hulle, S.; Rousseau, DPL. (2020). Horizontal subsurface flow constructed wetlands as tertiary treatment: can they be an efficient barrier for microplastics pollution?. The Science of The Total Environment. 721:1-8. https://doi.org/10.1016/j.scitotenv.2020.137785S18721Besseling, E., Wegner, A., Foekema, E. M., van den Heuvel-Greve, M. J., & Koelmans, A. A. (2012). Effects of Microplastic on Fitness and PCB Bioaccumulation by the Lugworm Arenicola marina (L.). Environmental Science & Technology, 47(1), 593-600. doi:10.1021/es302763xCarr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174-182. doi:10.1016/j.watres.2016.01.002Conley, K., Clum, A., Deepe, J., Lane, H., & Beckingham, B. (2019). Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year. Water Research X, 3, 100030. doi:10.1016/j.wroa.2019.100030De Sá, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L., & Futter, M. N. (2018). Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Science of The Total Environment, 645, 1029-1039. doi:10.1016/j.scitotenv.2018.07.207Gatidou, G., Arvaniti, O. S., & Stasinakis, A. S. (2019). Review on the occurrence and fate of microplastics in Sewage Treatment Plants. Journal of Hazardous Materials, 367, 504-512. doi:10.1016/j.jhazmat.2018.12.081Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science & Technology, 46(6), 3060-3075. doi:10.1021/es2031505Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., … Geissen, V. (2016). Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50(5), 2685-2691. doi:10.1021/acs.est.5b05478Hüffer, T., Wagner, S., Reemtsma, T., & Hofmann, T. (2019). Sorption of organic substances to tire wear materials: Similarities and differences with other types of microplastic. TrAC Trends in Analytical Chemistry, 113, 392-401. doi:10.1016/j.trac.2018.11.029Keller, A. S., Jimenez-Martinez, J., & Mitrano, D. M. (2019). Transport of Nano- and Microplastic through Unsaturated Porous Media from Sewage Sludge Application. Environmental Science & Technology, 54(2), 911-920. doi:10.1021/acs.est.9b06483Kühn, S., van Werven, B., van Oyen, A., Meijboom, A., Bravo Rebolledo, E. L., & van Franeker, J. A. (2017). The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms. Marine Pollution Bulletin, 115(1-2), 86-90. doi:10.1016/j.marpolbul.2016.11.034Lares, M., Ncibi, M. C., Sillanpää, M., & Sillanpää, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research, 133, 236-246. doi:10.1016/j.watres.2018.01.049Li, H. Z., Wang, S., Ye, J. F., Xu, Z. X., & Jin, W. (2011). A practical method for the restoration of clogged rural vertical subsurface flow constructed wetlands for domestic wastewater treatment using earthworm. Water Science and Technology, 63(2), 283-290. doi:10.2166/wst.2011.051Luo, H., Li, Y., Zhao, Y., Xiang, Y., He, D., & Pan, X. (2020). Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics. Environmental Pollution, 257, 113475. doi:10.1016/j.envpol.2019.113475Mason, S. A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., … Rogers, D. L. (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environmental Pollution, 218, 1045-1054. doi:10.1016/j.envpol.2016.08.056Mintenig, S. M., Int-Veen, I., Löder, M. G. J., Primpke, S., & Gerdts, G. (2017). Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research, 108, 365-372. doi:10.1016/j.watres.2016.11.015Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. doi:10.1021/acs.est.5b05416Ngo, P. L., Pramanik, B. K., Shah, K., & Roychand, R. (2019). Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environmental Pollution, 255, 113326. doi:10.1016/j.envpol.2019.113326Ouattara, J.-M. P., Coulibaly, L., Tiho, S., & Gourène, G. (2009). Comparison of macrofauna communities in sediments of the beds of vertical flow constructed wetlands planted with Panicum maximum (Jacq.) treating domestic wastewater. Ecological Engineering, 35(8), 1237-1242. doi:10.1016/j.ecoleng.2009.05.007Prata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150-159. doi:10.1016/j.trac.2018.10.029Raju, S., Carbery, M., Kuttykattil, A., Senathirajah, K., Subashchandrabose, S. R., Evans, G., & Thavamani, P. (2018). Transport and fate of microplastics in wastewater treatment plants: implications to environmental health. Reviews in Environmental Science and Bio/Technology, 17(4), 637-653. doi:10.1007/s11157-018-9480-3Redondo-Hasselerharm, P. E., Falahudin, D., Peeters, E. T. H. M., & Koelmans, A. A. (2018). Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates. Environmental Science & Technology, 52(4), 2278-2286. doi:10.1021/acs.est.7b05367Rousseau, D. P. L., Lesage, E., Story, A., Vanrolleghem, P. A., & De Pauw, N. (2008). Constructed wetlands for water reclamation. Desalination, 218(1-3), 181-189. doi:10.1016/j.desal.2006.09.034Stolte, A., Forster, S., Gerdts, G., & Schubert, H. (2015). Microplastic concentrations in beach sediments along the German Baltic coast. Marine Pollution Bulletin, 99(1-2), 216-229. doi:10.1016/j.marpolbul.2015.07.022Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., & Ni, B.-J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37. doi:10.1016/j.watres.2018.12.050Talvitie, J., Heinonen, M., Pääkkönen, J.-P., Vahtera, E., Mikola, A., Setälä, O., & Vahala, R. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science and Technology, 72(9), 1495-1504. doi:10.2166/wst.2015.360Talvitie, J., Mikola, A., Koistinen, A., & Setälä, O. (2017). Solutions to microplastic pollution – Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research, 123, 401-407. doi:10.1016/j.watres.2017.07.005Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B., & Janssen, C. R. (2015). Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environmental Pollution, 199, 10-17. doi:10.1016/j.envpol.2015.01.008Windsor, F. M., Tilley, R. M., Tyler, C. R., & Ormerod, S. J. (2019). Microplastic ingestion by riverine macroinvertebrates. Science of The Total Environment, 646, 68-74. doi:10.1016/j.scitotenv.2018.07.271Wolff, S., Kerpen, J., Prediger, J., Barkmann, L., & Müller, L. (2019). Determination of the microplastics emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy. Water Research X, 2, 100014. doi:10.1016/j.wroa.2018.100014Ziajahromi, S., Neale, P. A., Rintoul, L., & Leusch, F. D. L. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112, 93-99. doi:10.1016/j.watres.2017.01.042Ziajahromi, S., Drapper, D., Hornbuckle, A., Rintoul, L., & Leusch, F. D. L. (2020). Microplastic pollution in a stormwater floating treatment wetland: Detection of tyre particles in sediment. Science of The Total Environment, 713, 136356. doi:10.1016/j.scitotenv.2019.13635
    corecore