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Abstract 16 

Pharmaceutical residues in wastewater pose a challenge to wastewater treatment technologies. 17 

Constructed wetlands (CWs) are common wastewater treatment systems in rural areas and 18 

they discharge often in small water courses in which the ecology can be adversely affected by 19 

the discharged pharmaceuticals. Hence, there is thus a need for studies aiming to improve the 20 

removal of pharmaceuticals in CWs. In this study, the performance of a full-scale aerated sub-21 

surface flow hybrid CW treating wastewater from a healthcare facility was studied in terms of 22 
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common water parameters and pharmaceutical removal. In addition, a preliminary aquatic risk 23 

assessment based on hazard quotients was performed to estimate the likelihood of adverse 24 

effects on aquatic organisms in the forest creek where this CW discharges. The (combined) 25 

effect of aeration and hydraulic retention time was evaluated in a laboratory-scale batch 26 

experiment. Excellent removal of the targeted pharmaceuticals was obtained in the full-scale 27 

CW (> 90 %) and as a result the aquatic risk was estimated low. The removal efficiency of 28 

only a few of the targeted pharmaceuticals was found to be dependent on the applied aeration 29 

(namely gabapentin, metformin and sotalol). Longer the hydraulic retention time increased the 30 

removal of carbamazepine, diclofenac and tramadol.  31 

Key words 32 

Sub-surface flow, hybrid, Forced Bed Aeration, hazard quotient, LECA  33 

Introduction 34 

Many pharmaceuticals show such persistence to biodegradation that their presence in surface 35 

waters is used as an indicator of wastewater contamination (Vystavna et al., 2013). The 36 

environmental concentrations of pharmaceuticals are usually very low, in the range of ng/L 37 

but some commonly used substances which are poorly removed during wastewater treatment 38 

can occur at µg/L levels (Ashton et al., 2004; Lindqvist et al., 2005; Loos et al., 2009). It is 39 

likely that the highest concentrations of pharmaceuticals are detected in small streams where 40 

limited dilution occurs. 41 

The chronic effects that pharmaceutical residues can pose in the environment are difficult to 42 

identify and quantify. Therefore, the data on the ecotoxicity of pharmaceuticals is mostly 43 

derived from experiments in the laboratory and only a small part of this data is targeting 44 

effects after chronic exposure, i.e. long-term exposure at low concentration (Quinn et al., 45 
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2008). An initial estimate of the aquatic risk of the pharmaceuticals can be calculated via 46 

hazard quotients (HQs). The HQs compare the measured environmental concentration (MEC) 47 

and the predicted no-effect concentration (PNEC) for a specific organism observed in the 48 

laboratory experiments (Santos et al. 2007). If the ratio MEC / PNEC is  higher or equal to 1, 49 

the particular pharmaceutical can have adverse ecological effects (Gros et al. 2010).  50 

Constructed wetlands (CWs) are mostly used at rural and remote locations as wastewater 51 

treatment systems for single households and small communities. They discharge in small 52 

rivers and water courses which often have high biodiversity (Matamoros et al., 2016) making 53 

them vulnerable to anthropogenic pollution. The configurations vary from surface flow 54 

systems to sub-surface flow systems and hybrids where several (different types of) CWs are 55 

applied in the treatment chain (Kadlec & Wallace, 2009). The configuration, the operation 56 

and the ambient environmental conditions within the CW are likely to affect the 57 

pharmaceutical removal efficiency. Several studies on pharmaceutical removal efficiencies in 58 

different types of CWs have already been performed (for review see Verlicchi & Zambello, 59 

2014) but there is still need to explore factors that could improve the removal efficiency. For 60 

example, dissolved oxygen content is likely to play an important role in the removal of 61 

pharmaceuticals. Improved removal efficiency of e.g. diclofenac, ibuprofen and ketoprofen 62 

has been observed during discontinuous feeding which replenishes the oxygen in the substrate 63 

pores as studied in horizontal sub-surface CWs (Ávila et al., 2013; Zhang et al., 2012). Ávila 64 

et al. (2014) studied the effect of active aeration on pharmaceutical removal in vertical sub-65 

surface flow CWs, and concluded that the actively aerated saturated CW performed similarly 66 

to the typical unsaturated CW. However, their research included only a limited number of 67 

pharmaceutical substances and therefore, further research is needed to conclusively define the 68 

effect of active aeration on different types of pharmaceuticals.  69 
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The main objective of this study is to evaluate the removal efficiency in a full-scale sub-70 

surface flow constructed wetland treating wastewater from a healthcare facility and analyze 71 

the ecological impact of the effluent discharge in an effluent-dominated stream. In addition, 72 

the effects of active aeration and hydraulic retention time (HRT) on the removal efficiency are 73 

studied in a separate batch experiment.  74 

2 Materials and methods  75 

2.3 Full-scale constructed wetland 76 

The full-scale CW investigated in this study was built in 2015 and it is located at a health care 77 

facility in the Province of Antwerp in Belgium. The CW comprises a vertical sub-surface flow 78 

(VSSF) part followed by a horizontal sub-surface flow (HSSF) part having a total surface area 79 

of 240 m² (40 x 6 m) and a depth of 110 cm. Both parts are saturated. The design capacity of 80 

the system is 340 inhabitant equivalent but at the time of sampling the complete capacity of 81 

the system was not in use and therefore, the HRT of the system was long, approximately 10 d 82 

(design HRT 3 - 4 d). The CW receives wastewater from a septic tank at intervals and flow 83 

rate dependent on water consumption. The effluent flow rate varied during the sampling 84 

period from 6 m3d-1 to 16 m3d-1 based on 5 daily measurements during 5 consecutive days 85 

(hydraulic loading rate 0.025-0.067 m/d). The CW discharges effluent in a small forest creek 86 

where dilution occurs only by rainfall. The creek runs in a sandy ground and is shaded by the 87 

forest trees. The water depth in the creek was 0 - 10 cm (partly dry) and its flow rate low 88 

(partly stagnant).  89 

The CW bed (both VF and HSSF) contains porous light expanded clay aggregate (LECA; ∅ 90 

8/16 mm, Argex) granules. The HSSF part is partly filled with tobermorite (calcium silicate 91 

hydrate mineral) to increase the phosphorous removal. The CW is planted with Phragmites 92 
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australis and Iris pseudacorus. Aeration is provided in the CW with the Forced Bed Aeration 93 

technology (FBA®, Rietland). The aeration time is controlled automatically based on the flow 94 

rate of the incoming wastewater (4 h/d per 10 m3/d) and the capacity of the air pumps is 150 95 

m3/h.  96 

During the sampling period the weather was dry and the average temperature was ~10°C. 97 

Grab samples were taken from a reservoir tank where influent is collected after the septic tank 98 

and from an effluent collection well at the end of the CW from where the effluent is directly 99 

discharged into the creek. One influent and one effluent mixed sample were obtained per day 100 

and one such sample was based on 5 grab samples taken every 2 – 3 hours during day time. 101 

The sampling campaign lasted for 5 days. In addition, two grab samples were taken from the 102 

creek on the third sampling day (at noon) at distances 50 m and 100 m from the effluent 103 

discharge point.  104 

2.4 Batch experiment 105 

A microcosm scale batch experiment was set up in order to investigate in more detail the role 106 

of HRT and active aeration on the removal efficiency of selected pharmaceuticals. The 107 

substrate (1.3 L per setup) was put in a plastic container (∅ 20 cm, h ~5 cm) where influent 108 

(0.5 L) was added. The substrate (LECA) and influent were fetched from the full-scale CW 109 

and stored at 4 °C until the start of the batch experiment (2 days). Four treatments were 110 

applied in the microcosms (Table 1). Aeration was applied by means of one aquarium air 111 

pump (Hozelock 320) and air stones. The experiment was conducted inside at constant 112 

temperature (20°C) and the setups were covered to prevent light penetration. Effluent samples 113 

were obtained by draining the whole liquid volume from the microcosms.  114 
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Table 1 – Treatments during batch experiment 115 

Treatment Applied HRT (d) Aeration applied 

HRT2-AIR 2 Yes 
HRT6-AIR 6 Yes 
HRT2-NO-AIR 2 No 
HRT6-NO-AIR 6 No 

2.5 Analysis methods 116 

2.5.1 Common water quality parameters  117 

Dissolved oxygen (DO) and pH were measured once in the full-scale CW using a multimeter 118 

HQ40d (Hach). The measurements were conducted in the influent, at 3 locations along the 119 

length of the CW and in the effluent once during the experiment. The mixed influent and 120 

effluent samples obtained during the sampling campaign of the full-scale CW were analyzed 121 

for chemical oxygen demand (COD), ammonium (NH4
+) and nitrate (NO3

-) by using kits 122 

according to manufacturer’s instructions (LCI500, LCK305, LCK340; Hach, Belgium). The 123 

influent and effluent samples from the batch experiment were analyzed for DO and pH 124 

(HQ40d, Hach).  125 

2.5.2 Analysis of pharmaceuticals 126 

Twelve pharmaceuticals from 7 different therapeutic classes were targeted in this study. The 127 

selected pharmaceuticals were atenolol (ATL), bisoprolol (BSP), carbamazepine (CBZ), 128 

diazepam (DZP), diclofenac (DCF), gabapentin (GBP), metformin (MFM), metoprolol 129 

(MTP), sotalol (STL), telmisartan (TST), tramadol (TMD) and valsartan (VST). The analysis 130 

of the target pharmaceuticals was done using an LS-MSMS system (Thermo Fisher Scientific 131 

LTQ Orbitrap) after purification and concentration of the samples using solid phase extraction 132 

(SPE). SPE was done using commercially available SPE cartridges filled with Oasis HLB 133 
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material from Waters (Milford, MA, USA). The analytical procedure is described in detail 134 

elsewhere (Auvinen et al., 2017).  135 

2.6 Data analysis 136 

Statistical analyses on the pharmaceutical removal efficiencies were performed by using the 137 

SPSS Statistics 24 software. Since the data had partly non-normal distribution as observed by 138 

using the Shapiro-Wilk test, the data sets were further analyzed by using a non-parametric test 139 

(Kruskal-Wallis H test) with Bonferroni post hoc test to define the significance of the 140 

differences. Spearman’s rank order correlations were run to determine the correlation between 141 

removal efficiency and DO concentration. The significance level was set at p = 0.05. 142 

2.7 Aquatic risk assessment  143 

The hazard quotients (HQs) were calculated based on the measured environmental 144 

concentration (MEC) and predicted no-effect concentration (PNEC) according the following 145 

equation: 146 

�� =  
���

�	��
 

The PNEC was estimated based on chronic toxicity data using an assessment factor of 1000 147 

applied to the lowest EC50 value reported (Vestel et al., 2016) or NOEC values with an 148 

assessment factor of 10 (Jin et al., 2012). The variation in the HQs was calculated based on 149 

the lowest and the highest MEC in the effluent/creek.  150 

The preliminary risk assessment based on HQs was done using small water organisms and 151 

plant species (Brachionus calyciflorus, Lemna minor, Desmodesmus subspicatus, 152 

Ceriodaphnia dubia and Daphnia magna) as model organisms. The PNEC-values calculated 153 

based on literature data are shown in Table 2. 154 
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Table 2 – PNEC values obtained based on literature data. *The factor has been taken into account when 155 

defining PNEC value.  156 

Type Species *Factor 

applied  

PNEC 

(µg/L) 

Reference 

Algae D. subspicatus 1000 74 Cleuvers, 
2003 

Invertebrate/rotifer B. calyciflorus 10 38 Ferrari et al., 
2003 

Invertebrate/crustacean C. dubia 10 2.5 Ferrari et al., 
2003 

Invertebrate/crustacean D. magna 1000 76.3 Ginebreda et 
al., 2010 

Plant L. minor 1000 25.5 Cleuvers, 
2003 

 157 

3 Results  158 

3.1 Water quality based on conventional parameters during full-scale treatment 159 

The full-scale CW performance was monitored during the sampling campaign for COD, NH4
+ 160 

and NO3
- and on-site measurements pH and DO were measured on one day (Table 3). The 161 

high pH in the effluent water is likely to be caused by the tobermorite mineral in the substrate. 162 

Due to the oxic conditions in the CW (10.6±0.1 mg/L), the COD and NH4
+ removal were high 163 

(98 % and >98 %, respectively). The denitrification efficiency was limited, likely due to the 164 

aeration applied, and hence, approximately 50 % of NH4
+-N in the influent was discharged as 165 

NO3
--N.  166 

Table 3 – Conventional water quality parameters during full-scale treatment. Average values ±±±± standard 167 

deviation (n=5; except for pH and DO in CW n=3 and for pH and DO in influent and effluent n=1). N/A: 168 

not analyzed.  169 

 pH DO 

(mg/L) 

COD (mg/L) NH4
+
 (mg N/L) NO3

- 
(mg N/L)  

Influent 7.5 0.7 486±128 68±7 <5  
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CW 7.7±0.5 10.6±0.1 N/A N/A N/A  
Effluent 8.6 11.3 11±1 <2 33±3  

Removal efficiency 

(%) 

- - 98 >98 -  

3.2 Dissolved oxygen concentration and pH during the batch experiment 170 

The pH did not change markedly during the batch experiment (Table 4). The DO was much 171 

higher in the effluent of the aerated microcosms (7.7±1.0 mg/L) than in the microcosms 172 

without aeration (0.9±0.5 mg/L).  173 

Table 4 – DO and pH during the batch experiment. Average values ±±±± standard deviation (n=3) 174 

  pH  DO 

Influent  7.5 3.6  
HRT2-AIR 6.5±0.0 7.9±0.6 
HRT6-AIR 6.4±0.2 7.5±1.1 

HRT2-NO-AIR 7.0±0.0 1.2±0.2 
HRT6-NO-AIR 7.0±0.1 0.6±0.5 
 175 

3.3 Occurrence of pharmaceuticals in the influent 176 

The selected pharmaceuticals occurred in the influent at varying levels (Figure 1, Table 5). 177 

The lowest average concentration (40±20 ng/L) was measured for DZP and the highest one 178 

(50.66±32.74 µg/L) for MFM. TST and VST were not detected in any of the samples. The 179 

concentrations fluctuated also greatly from day to day (standard deviation near average 180 

concentration) due to daily variations in water consumption for e.g. bathing. In general, the 181 

influent pharmaceutical concentrations are so high that they are comparable to concentrations 182 

occurring in hospital effluent (Auvinen et al., 2017).  183 



10 

 

 184 

Figure 1 – Box plots on the influent pharmaceutical concentrations of the full-scale CW (n=5). Note the 185 

logarithmic scale. The tick marks ○ and * mark the outliers.  186 

3.4 Removal of selected pharmaceuticals during full-scale treatment 187 

Very efficient removal of the selected pharmaceuticals was achieved during the full-scale 188 

treatment (in general >90 %) (Table 5). Although MFM and TMD were present in the influent 189 

at the highest concentrations, their efficient removal in the CW lowered their concentrations 190 

in the effluent to ≤ 30 ng/L. The highest average concentration observed in the effluent was 191 

for CBZ (1280±300 ng/L). The average concentrations of ATL, BSP and DCF were below 192 

100 ng/L and the average concentrations of DZP, GBP, MTP and STL were below the 193 

detection limit (10 ng/L). In the creek only CBZ and TMD were detected in the two grab 194 

samples (1380±520 ng/L and 60±20 ng/L, respectively). On the day when the creek water was 195 

sampled, only CBZ and TMD were detected in the effluent.  196 
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3.5 Effect of active aeration and hydraulic retention time on the removal efficiency 197 

Aeration improved the removal of GBP significantly (Figure 2). The removal of MFM and 198 

STL was improved significantly at HRT 2 d (Figure 2) but at HRT 6 d the removal was 199 

statistically equally efficient with or without aeration. The removal efficiencies of GBP, MFM 200 

(at HRT 2 d) and STL (at HRT 2 d) correlated also well with the DO concentration in the 201 

effluent (rs=0.8, p<0.05). The concentration of TST was below the detection limit (10 ng/L) in 202 

all effluent samples. The variable removal efficiencies observed for VST are likely to be 203 

caused by the low influent concentrations (20±10 ng/L) and subsequent difficulties in 204 

quantification.  205 

The removal efficiency of CBZ was improved with increasing HRT. The longer HRT 206 

improved the removal of DCF only during aeration and oppositely, the longer HRT enhanced 207 

the removal of TMD when aeration was not applied.  208 
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Table 5 – Removal of selected pharmaceuticals during full-scale treatment 209 

 ATL BSP CBZ DZP DCF GBP MFM MTP STL TMD 

Influent 

(ng/L) 
5570±5220 5670±3480 20580±14800 40±20 5040±4370 7910±6740 50660±32740 410±270 680±440 42180±40320 

Effluent 

(ng/L) 
90±120 10±10 1280±300 <10±0 50±90 <10±0 <10±0 <10±0 <10±0 30±10 

Removal 

efficiency 

(%) 

98 ~100 94 78 99 ~100 ~100 98 99 ~100 
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 210 

Figure 2 – Dependency of the removal efficiencies of the selected pharmaceuticals on aeration and HRT 211 

(average ±±±± standard deviation; n=3 except for HRT2-NO-AIR n=2 due to loss of sample). Statistically 212 

significant differences are marked with differing letters a and b.  213 

3.6 Aquatic risk assessment 214 

The HQs are calculated only for CBZ due to the very low concentrations of other 215 

pharmaceuticals present in the effluent. The HQs, which was based on minimum and 216 

maximum concentrations detected in effluent and the creek, ranged from 0.01 to 0.7; not 217 

indicating possible toxicity to the target organisms by CBZ discharge alone.  218 
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4 Discussion 219 

In contrast to earlier experiments on beta-blockers (ATL, BSP, MTP, STL) in activated 220 

sludge systems (Wick et al., 2009), excellent removal of these compounds was obtained in the 221 

current study. Also in earlier studies on CWs, lower removal efficiency of ATL, BSP and 222 

STL has been noted, MTP and STL being the more recalcitrant types (11 – 80 %; Conkle et 223 

al. (2008). Dordio et al. (2009) studied the removal of ATL in unplanted microcosms filled 224 

with LECA granules and concluded that the efficient removal obtained (82 %) over 4 days 225 

was primarily caused by adsorption of ATL to the LECA granules because new material (no 226 

biofilm) was used in the study. It is thus possible that the combination of biodegradation and 227 

adsorption onto the LECA granules enabled the excellent removal efficiency observed in the 228 

current study. The full-scale CW is only recently (in late 2015) taken into operation and this 229 

has possibly an effect on the adsorption capacity of the LECA (not saturated, biofilm not fully 230 

developed). The removal efficiency of STL further depended on aeration and correlated 231 

positively with the DO concentration of the effluent. The removal efficiency of STL was 232 

however not dependent on the aeration when HRT of 6 d was used instead of 2 d. Anoxic 233 

biotransformations are in general slower than oxic ones and hence, a longer HRT is needed to 234 

obtain the same treatment efficiency.  235 

GBP has earlier been reported to be quite efficiently removed in CWs (88 %; Chen et al., 236 

2016). Based on the batch experiment, GBP is readily biodegradable in oxic conditions and it 237 

can be removed even at a short HRT. In a previous study, where hospital wastewater was 238 

treated in an aerated pilot-scale sub-surface flow CW, GBP was only removed by 33 -37 % 239 

(Auvinen et al., 2017). It is possible that the high organic loading applied in the 240 

aforementioned study restricted the removal of GBP.  241 
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Although many studies on CWs report low removal efficiency for DCF (< 50 %; e.g. 242 

Matamoros & Bayona, 2006), excellent removal of pharmaceuticals has earlier been observed 243 

especially in hybrid systems. Ávila et al. (2010), who studied the removal of DCF in a CW 244 

system comprising of two horizontal sub-surface flow CWs in series, showed that DCF was 245 

removed by > 97 % at a similar hydraulic loading rate (0.028 m/d) as applied in the current 246 

study. Similarly, a removal efficiency of 89 % of DCF was observed in a hybrid CW where 247 

vertical sub-surface flow CW is followed by a  horizontal sub-surface flow CW and a surface 248 

flow CW (Ávila et al., 2015). The reason for the better removal in hybrid systems can be 249 

related to the presence of both anoxic and aerobic conditions occurring in these types of CWs, 250 

which are likely to be essential for the degradation process of DCF (Ávila et al., 2014). Based 251 

on the batch experiment it seems that HRT also plays a role in the removal efficiency of DCF 252 

in aerobic conditions. It is possible that the oxic pathway necessary for the degradation is 253 

limiting the removal in the microcosms without aeration and hence, the removal is not 254 

improved even at longer HRT.  255 

MFM has also earlier been shown to be efficiently removed in CWs (Auvinen et al., 2017). In 256 

that study, MFM was removed promptly during aeration but a lag-phase occurred when 257 

aeration was not used. Similar behavior was observed in the current study, where the removal 258 

efficiency in the non-aerated microcosms was improved with increasing HRT.  259 

Poor removal of TMD has been reported in earlier literature. Auvinen et al. (2017) observed 260 

negative removal efficiencies for TMD in a pilot-scale sub-surface CW. Breitholtz et al. 261 

(2012) studied full-scale free-surface flow CWs and observed removal efficiencies ranging 262 

from negative values to 26 %. They explained the low removal to be partly caused by the sub-263 

zero temperatures and subsequent slow biotransformations. Although Auvinen et al., (2017) 264 

did not find a correlation between aeration and removal efficiency for TMD in their study, it 265 
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is possible that the applied HRT (1 d) was too short to obtain significant removal with or 266 

without aeration. In the current study, the increase in HRT (from 2 d to 6 d) increased the 267 

removal of TMD when aeration was not applied indicating that the anoxic pathway is 268 

preferred but adequate HRT is necessary.  269 

CBZ is generally considered as a recalcitrant component and therefore, its efficient removal in 270 

the current study is somewhat surprising. The applied aeration did not decrease its removal 271 

significantly, although some studies indicate better removal at low redox conditions 272 

(Matamoros et al., 2005). CBZ has also been observed to be removed by adsorption to LECA 273 

(Dordio, Estêvão Candeias et al., 2009) similarly to ATL (Dordio, Pinto, et al., 2009). The 274 

fact that the removal of CBZ was improved by increasing HRT can be linked to the improved 275 

adsorption efficiency and/or be due to better biodegradation during longer contact time. It is 276 

also possible that the observed unusually high effluent pH of the full-scale CW affected the 277 

adsorption behavior. In earlier experiments pH has been shown to affect the dissociation of 278 

the pharmaceutical and its subsequent attachment to soil/sediment by ion exchange 279 

(Lorphensri et al., 2006).  280 

Because the CW discharges into a small forest creek where little to no dilution occurs, it was 281 

important to assess the effect of pharmaceuticals on the ecotoxicity in this creek. Due to the 282 

efficient removal of all targeted pharmaceuticals the initial estimation of the aquatic risk in 283 

the forest creek is insignificant for the model organisms. Final conclusions on the risk should 284 

only be drawn after further investigations where more pharmaceuticals are targeted and where 285 

the degradation products of the pharmaceuticals are taken into account. Also, the differences 286 

in water consumption and aeration regime during day and night may have an effect on the 287 

discharge and hence, an effect on the potential toxicity of the effluent.  288 
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5 Conclusions 289 

The full-scale CW produced a high quality effluent in terms of COD, NH4
+ and the targeted 290 

pharmaceuticals. The removal efficiency of all targeted pharmaceuticals was > 90 %; higher 291 

than generally seen in CWs. The excellent removal is expected to be caused by the hybrid 292 

design of the CW where oxic and anoxic zones are both present, long HRT (10 d) and the 293 

presence of LECA which has been shown adsorb (at least) ATL and CBZ efficiently.  294 

Aeration in the laboratory-scale experiment was shown to increase the removal of only a few 295 

pharmaceuticals, namely GBP, MFM and STL. The removal of MFM and STL was equally 296 

efficient with and without aeration when the longer HRT (6 d) was applied. TMD was better 297 

removed when aeration was not applied at long HRT. DCF showed opposite behavior and its 298 

removal improved with increasing HRT as aeration was applied. Due to the overall efficient 299 

removal of the targeted pharmaceuticals, the aquatic risk was considered low in a preliminary 300 

assessment.   301 

Further research should aim at validating the results obtained during the batch experiment. 302 

This could be done when the full-scale CW is in full operation and its HRT is decreased to the 303 

design HRT of 3 – 4 d. The adsorption on LECA could decrease with increasing biofilm 304 

growth during longer operation time and cause a decrease in the removal efficiencies. 305 

However, because of the large specific surface area of the porous LECA, the area occupied by 306 

biofilm is larger than in conventional CWs filled with gravel, possibly enhancing the 307 

treatment. In future research attention should also be paid to the discharge of pharmaceutical 308 

degradation products, such as quanylurea (from MFM) which could be present at high 309 

concentrations in the effluent (Scheurer et al., 2012). Although the water quality of the 310 

effluent based on common parameters meets the requirements, the removal of NO3
- could 311 

possibly be improved by adjusting the aeration regime of the horizontal stage of the CW. The 312 



18 

 

discharge of NO3
- is an important issue in Flanders which is categorized as a nitrate sensitive 313 

area by the European Union (European Commission, 1991). 314 
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