1,365 research outputs found

    Diffusive radiation in Langmuir turbulence produced by jet shocks

    Full text link
    Anisotropic distributions of charged particles including two-stream distributions give rise to generation of either stochastic electric fields (in the form of Langmuir waves, Buneman instability) or random quasi-static magnetic fields (Weibel and filamentation instabilities) or both. These two-stream instabilities are known to play a key role in collisionless shock formation, shock-shock interactions, and shock-induced electromagnetic emission. This paper applies the general non-perturbative stochastic theory of radiation to study electromagnetic emission produced by relativistic particles, which random walk in the stochastic electric fields of the Langmuir waves. This analysis takes into account the cumulative effect of uncorrelated Langmuir waves on the radiating particle trajectory giving rise to angular diffusion of the particle, which eventually modifies the corresponding radiation spectra. We demonstrate that the radiative process considered is probably relevant for emission produced in various kinds of astrophysical jets, in particular, prompt gamma-ray burst spectra, including X-ray excesses and prompt optical flashes.Comment: 9 pages, 5 figures, MNRAS, accepte

    Stabilisation of BGK modes by relativistic effects

    Get PDF
    Context. We examine plasma thermalisation processes in the foreshock region of astrophysical shocks within a fully kinetic and self-consistent treatment. We concentrate on proton beam driven electrostatic processes, which are thought to play a key role in the beam relaxation and the particle acceleration. Our results have implications for the effectiveness of electron surfing acceleration and the creation of the required energetic seed population for first order Fermi acceleration at the shock front. Aims. We investigate the acceleration of electrons via their interaction with electrostatic waves, driven by the relativistic Buneman instability, in a system dominated by counter-propagating proton beams. Methods. We adopt a kinetic Vlasov-Poisson description of the plasma on a fixed Eulerian grid and observe the growth and saturation of electrostatic waves for a range of proton beam velocities, from 0.15c to 0.9c. Results. We can report a reduced stability of the electrostatic wave (ESW) with increasing non-relativistic beam velocities and an improved wave stability for increasing relativistic beam velocities, both in accordance with previous findings. At the highest beam speeds, we find the system to be stable again for a period of ≈160 plasma periods. Furthermore, the high phase space resolution of the Eulerian Vlasov approach reveals processes that could not be seen previously with PIC simulations. We observe a, to our knowledge, previously unreported secondary electron acceleration mechanism at low beam speeds. We believe that it is the result of parametric couplings to produce high phase velocity ESW’s which then trap electrons, accelerating them to higher energies. This allows electrons in our simulation study to achieve the injection energy required for Fermi acceleration, for beam speeds as low as 0.15c in unmagnetised plasma

    Emergence and maintenance of biodiversity in an evolutionary food-web model

    Get PDF
    Ecological communities emerge as a consequence of gradual evolution, speciation, and immigration. In this study, we explore how these processes and the structure of the evolved food webs are affected by species-level properties. Using a model of biodiversity formation that is based on body size as the evolving trait and incorporates gradual evolution and adaptive radiation, we investigate how conditions for initial diversification relate to the eventual diversity of a food web. We also study how trophic interactions, interference competition, and energy availability affect a food web's maximum trophic level and contrast this with conditions for high diversity. We find that there is not always a positive relationship between conditions that promote initial diversification and eventual diversity, and that the most diverse food webs often do not have the highest trophic levels

    Editorial: Judgment and decision making under uncertainty. Descriptive, normative, and prescriptive perspectives

    Get PDF
    Judgment and Decision Making Under Uncertainty: Descriptive, Normative, and Prescriptive Perspectives was motivated by our interest in better understanding why people judge and decide as they do (descriptive perspective), how they ideally ought to judge and decide (normative perspective), and how their judgment and decision-making processes might be improved in practice (prescriptive perspective). We sought papers that addressed some aspect of judgment and decision making from one or more of these three theoretical perspectives. We further sought contributions that examined judgment and decision making under conditions of uncertainty, which we intentionally left loosely defined. Our focus on uncertainty reflects the fact that the vast majority of decisions people make in life are not made under conditions of complete certainty, and the uncertainties may be more or less well-defined. Indeed, different components of a single judgment or decision may have multiple uncertainties associated with it, some of which may be fuzzier than others. Following our call for papers, we received 32 submissions, 17 of which were accepted. The latter set comprises this book. There are 11 original research articles, 2 hypothesis and theory articles, 2 perspectives, and 1 book review and systematic review each

    Polymorphic evolution sequence and evolutionary branching

    Get PDF
    We are interested in the study of models describing the evolution of a polymorphic population with mutation and selection in the specific scales of the biological framework of adaptive dynamics. The population size is assumed to be large and the mutation rate small. We prove that under a good combination of these two scales, the population process is approximated in the long time scale of mutations by a Markov pure jump process describing the successive trait equilibria of the population. This process, which generalizes the so-called trait substitution sequence, is called polymorphic evolution sequence. Then we introduce a scaling of the size of mutations and we study the polymorphic evolution sequence in the limit of small mutations. From this study in the neighborhood of evolutionary singularities, we obtain a full mathematical justification of a heuristic criterion for the phenomenon of evolutionary branching. To this end we finely analyze the asymptotic behavior of 3-dimensional competitive Lotka-Volterra systems

    Modeling the ecology and evolution of communities: A review of past achievements, current efforts, and future promises

    Get PDF
    Background: The complexity and dynamical nature of community interactions make modeling a useful tool for understanding how communities develop over time and how they respond to external perturbations. Large community-evolution models (LCEMs) are particularly promising, since they can address both ecological and evolutionary questions, and can give rise to richly structured and diverse model communities. Questions: Which types of models have been used to study community structure and what are their key features and limitations? How do adaptations and/or invasions affect community formation? Which mechanisms promote diverse and table communities? What are the implications of LCEMs for management and conservation? What are the key challenges for future research? Models considered: Static models of community structure, demographic community models, and small and large community- evolution models. Conclusions: LCEMs encompass a variety of modeled traits and interactions, demographic dynamics, and evolutionary dynamics. They are able to reproduce empirical community structures. Already, they have generated new insights, such as the dual role of competition, which limits diversity through competitive exclusion, yet facilitates diversity through speciation. Other critical factors determining eventual community structure are the shape of trade-off functions, inclusion of adaptive foraging, and energy availability. A particularly interesting feature of LCEMs is that these models not only help to contrast outcomes of community formation via species assembly with those of community formation via gradual evolution and speciation, but that they can furthermore unify the underlying invasion processes and evolutionary processes into a single framework

    Metal-free α-amination of secondary amines: Computational and experimental evidence for azaquinone methide and azomethine ylide intermediates

    Full text link
    We have performed a combined computational and experimental study to elucidate the mechanism of a metal-free α-amination of secondary amines. Calculations predicted azaquinone methides and azomethine ylides as the reactive intermediates and showed that iminium ions are unlikely to participate in these transformations. These results were confirmed by experimental deuterium-labeling studies and the successful trapping of the postulated azomethine ylide and azaquinone methide intermediates. In addition, computed barrier heights for the rate-limiting step correlate qualitatively with experimental findings. © 2013 American Chemical Society

    A simple mathematical model of gradual Darwinian evolution: Emergence of a Gaussian trait distribution in adaptation along a fitness gradient

    Get PDF
    We consider a simple mathematical model of gradual Darwinian evolution in continuous time and continuous trait space, due to intraspecific competition for common resource in an asexually reproducing population in constant environment, while far from evolutionary stable equilibrium. The model admits exact analytical solution. In particular, Gaussian distribution of the trait emerges from generic initial conditions.Comment: 21 pages, 2 figures, as accepted to J Math Biol 2013/03/1

    Persistence, extinction and spatio-temporal synchronization of SIRS cellular automata models

    Full text link
    Spatially explicit models have been widely used in today's mathematical ecology and epidemiology to study persistence and extinction of populations as well as their spatial patterns. Here we extend the earlier work--static dispersal between neighbouring individuals to mobility of individuals as well as multi-patches environment. As is commonly found, the basic reproductive ratio is maximized for the evolutionary stable strategy (ESS) on diseases' persistence in mean-field theory. This has important implications, as it implies that for a wide range of parameters that infection rate will tend maximum. This is opposite with present results obtained in spatial explicit models that infection rate is limited by upper bound. We observe the emergence of trade-offs of extinction and persistence on the parameters of the infection period and infection rate and show the extinction time having a linear relationship with respect to system size. We further find that the higher mobility can pronouncedly promote the persistence of spread of epidemics, i.e., the phase transition occurs from extinction domain to persistence domain, and the spirals' wavelength increases as the mobility increasing and ultimately, it will saturate at a certain value. Furthermore, for multi-patches case, we find that the lower coupling strength leads to anti-phase oscillation of infected fraction, while higher coupling strength corresponds to in-phase oscillation.Comment: 12page
    corecore