2,462 research outputs found

    Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex

    Full text link
    The spectrotemporal receptive field (STRF) provides a versatile and integrated, spectral and temporal, functional characterization of single cells in primary auditory cortex (AI). In this paper, we explore the origin of, and relationship between, different ways of measuring and analyzing an STRF. We demonstrate that STRFs measured using a spectrotemporally diverse array of broadband stimuli -- such as dynamic ripples, spectrotemporally white noise, and temporally orthogonal ripple combinations (TORCs) -- are very similar, confirming earlier findings that the STRF is a robust linear descriptor of the cell. We also present a new deterministic analysis framework that employs the Fourier series to describe the spectrotemporal modulations contained in the stimuli and responses. Additional insights into the STRF measurements, including the nature and interpretation of measurement errors, is presented using the Fourier transform, coupled to singular-value decomposition (SVD), and variability analyses including bootstrap. The results promote the utility of the STRF as a core functional descriptor of neurons in AI.Comment: 42 pages, 8 Figures; to appear in Journal of Computational Neuroscienc

    The Soundproof Model of an Acoustic–internal Waves System with Low Stratification

    Get PDF
    This work is devoted to investigating a compressible fluid system with low stratification, which is driven by fast acoustic waves and internal waves. The approximation using a soundproof model is justified. More precisely, the soundproof model captures the dynamics of both the non-oscillating mean flows and the oscillating internal waves, while filters out the fast acoustic waves, of the compressible system with or without initial acoustic waves. Moreover, the fast-slow oscillation structure is investigated

    Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex

    Get PDF
    The spectrotemporal receptive field (STRF) provides a versatile and integrated, spectral and temporal, functional characterization of single cells in primary auditory cortex (AI). In this paper, we explore the origin of, and relationship between, different ways of measuring and analyzing an STRF. We demonstrate that STRFs measured using a spectrotemporally diverse array of broadband stimuli—such as dynamic ripples, spectrotemporally white noise, and temporally orthogonal ripple combinations (TORCs)—are very similar, confirming earlier findings that the STRF is a robust linear descriptor of the cell. We also present a new deterministic analysis framework that employs the Fourier series to describe the spectrotemporal modulations contained in the stimuli and responses. Additional insights into the STRF measurements, including the nature and interpretation of measurement errors, is presented using the Fourier transform, coupled to singular-value decomposition (SVD), and variability analyses including bootstrap. The results promote the utility of the STRF as a core functional descriptor of neurons in A

    In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy

    No full text
    International audienceWe demonstrate multimodal nonlinear optical imaging of historical artifacts by combining Second Harmonic Generation (SHG) and Two-Photon Excited Fluorescence (2PEF) microscopies. We first identify the nonlinear optical response of materials commonly encountered in coatings of cultural heritage artifacts by analyzing one- and multi-layered model samples. We observe 2PEF signals from cochineal lake and sandarac and show that pigments and varnish films can be discriminated by exploiting their different emission spectral ranges as in luminescence linear spectroscopy. We then demonstrate SHG imaging of a filler, plaster, composed of bassanite particles which exhibit a non centrosymmetric crystal structure. We also show that SHG/2PEF imaging enables the visualization of wood microstructure through typically 60 µm-thick coatings by revealing crystalline cellulose (SHG signal) and lignin (2PEF signal) in the wood cell walls. Finally, in situ multimodal nonlinear imaging is demonstrated in a historical violin. SHG/2PEF imaging thus appears as a promising non-destructive and contactless tool for in situ 3D investigation of historical coatings and more generally for wood characterization and coating analysis at micrometer scale. © 2012 OS

    Securitization and the construction of security

    Get PDF
    Those interested in the construction of security in contemporary international politics have increasingly turned to the conceptual framework of `securitization'. This article argues that while an important and innovative contribution, the securitization framework is problematically narrow in three senses. First, the form of act constructing security is defined narrowly, with the focus on the speech of dominant actors. Second, the context of the act is defined narrowly, with the focus only on the moment of intervention. Finally, the framework of securitization is narrow in the sense that the nature of the act is defined solely in terms of the designation of threats. In outlining this critique, the article points to possibilities for developing the framework further as well as for the need for those applying it to recognize both limits of their claims and the normative implications of their analysis. I conclude by pointing to how the framework might fit within a research agenda concerned with the broader construction of security

    Dynamics of Neural Responses in Ferret Primary Auditory Cortex: I. Spectro-Temporal Response Field Characterization by Dynamic Ripple Spectra

    Get PDF
    To understand the neural representation of broadband, dynamic sounds in Primary Auditory Cortex (AI), we characterize responses using the Spectro-Temporal Response Field (STRF). The STRF describes and predicts the linear response of neurons to sounds with rich spectro-temporal envelopes. It is calculated here from the responses to elementary "ripples," a family of sounds with drifting, sinusoidal, spectral envelopes--the complex spectro-temporal envelope of any broadband, dynamic sound can expressed as the linear sum of individual ripples. The collection of responses to all elementary ripples is the spectro-temporal transfer function. Previous experiments using ripples with downward drifting spectra suggested that the transfer function is separable, i.e., it is reducible into a product of purely temporal and purely spectral functions. Here we compare the responses to upward and downward drifting ripples, assuming separability within each direction, to determine if the total bi-directional transfer function is fully separable. In general, the combined transfer function for two directions is not symmetric, and hence units in AI are not, in general, fully separable. Consequently, many AI units have complex response properties such as sensitivity to direction of motion, though most inseparable units are not strongly directionally selective. We show that for most neurons the lack of full separability stems from differences between the upward and downward spectral cross-sections, not from the temporal cross-sections; this places strong constraints on the neural inputs of these AI units

    Robust Spectro-Temporal Reverse Correlation for the Auditory System: Optimizing Stimulus Design

    Get PDF
    The spectro-temporal receptive field (STRF) is a functionaldescriptor of the linear processing of time-varying acoustic spectra by theauditory system. By cross-correlating sustained neuronal activity with the"dynamic spectrum" of a spectro-temporally rich stimulus ensemble, oneobtains an estimate of the STRF. In this paper, the relationship betweenthe spectro-temporal structure of any given stimulus and the quality ofthe STRF estimate is explored and exploited. Invoking the Fouriertheorem, arbitrary dynamic spectra are described as sums of basicsinusoidal components, i.e., "moving ripples." Accurate estimation isfound to be especially reliant on the prominence of components whosespectral and temporal characteristics are of relevance to the auditorylocus under study, and is sensitive to the phase relationships betweencomponents with identical temporal signatures.These and otherobservations have guided the development and use of stimuli withdeterministic dynamic spectra composed of the superposition of many"temporally orthogonal" moving ripples having a restricted, relevant rangeof spectral scales and temporal rates. The method, termedsum-of-ripples, is similar in spirit to the "white-noise approach," butenjoys the same practical advantages--which equate to faster and moreaccurate estimation--attributable to the time-domain sum-of-sinusoidsmethod previously employed in vision research. Application of the methodis exemplified with both modeled data and experimental data from ferretprimary auditory cortex (AI)

    Point of Care Strategy for Rapid Diagnosis of Novel A/H1N1 Influenza Virus

    Get PDF
    Within months of the emergence of the novel A/H1N1 pandemic influenza virus (nA/H1N1v), systematic screening for the surveillance of the pandemic was abandoned in France and in some other countries. At the end of June 2009, we implemented, for the public hospitals of Marseille, a Point Of Care (POC) strategy for rapid diagnosis of the novel A/H1N1 influenza virus, in order to maintain local surveillance and to evaluate locally the kinetics of the pandemic.Two POC laboratories, located in strategic places, were organized to receive and test samples 24 h/24. POC strategy consisted of receiving and processing naso-pharyngeal specimens in preparation for the rapid influenza diagnostic test (RIDT) and real-time RT-PCR assay (rtRT-PCR). This strategy had the theoretical capacity of processing up to 36 samples per 24 h. When the flow of samples was too high, the rtRT-PCR test was abandoned in the POC laboratories and transferred to the core virology laboratory. Confirmatory diagnosis was performed in the core virology laboratory twice a day using two distinct rtRT-PCR techniques that detect either influenza A virus or nA/N1N1v. Over a period of three months, 1974 samples were received in the POC laboratories, of which 111 were positive for nA/H1N1v. Specificity and sensitivity of RIDT were 100%, and 57.7% respectively. Positive results obtained using RIDT were transmitted to clinical practitioners in less than 2 hours. POC processed rtRT-PCR results were available within 7 hours, and rtRT-PCR confirmation within 24 hours.The POC strategy is of benefit, in all cases (with or without rtRT-PCR assay), because it provides continuous reception/processing of samples and reduction of the time to provide consolidated results to the clinical practitioners. We believe that implementation of the POC strategy for the largest number of suspect cases may improve the quality of patient care and our knowledge of the epidemiology of the pandemic
    • …
    corecore