The spectrotemporal receptive field (STRF) provides a versatile and
integrated, spectral and temporal, functional characterization of single cells
in primary auditory cortex (AI). In this paper, we explore the origin of, and
relationship between, different ways of measuring and analyzing an STRF. We
demonstrate that STRFs measured using a spectrotemporally diverse array of
broadband stimuli -- such as dynamic ripples, spectrotemporally white noise,
and temporally orthogonal ripple combinations (TORCs) -- are very similar,
confirming earlier findings that the STRF is a robust linear descriptor of the
cell. We also present a new deterministic analysis framework that employs the
Fourier series to describe the spectrotemporal modulations contained in the
stimuli and responses. Additional insights into the STRF measurements,
including the nature and interpretation of measurement errors, is presented
using the Fourier transform, coupled to singular-value decomposition (SVD), and
variability analyses including bootstrap. The results promote the utility of
the STRF as a core functional descriptor of neurons in AI.Comment: 42 pages, 8 Figures; to appear in Journal of Computational
Neuroscienc