357 research outputs found

    PLoS Genet.

    No full text
    Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included 34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from 29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates indicate that the short-term mutation rate is 1.4x10(-6) (serial isolates) to 4.5x10(-6) (family isolates) per nucleotide per year and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate over millennia is 5-17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection. Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude

    ใƒฉใƒƒใƒˆใฎ่ก€ๆถฒไธญใง๏ฝคใƒ‹ใƒˆใƒญใ‚ฐใƒชใ‚ปใƒชใƒณใจไบœ็ก้…ธใ‚ฝใƒผใƒ€ใ‹ใ‚‰็”ฃ็”Ÿใ•ใ‚Œใ‚‹ไธ€้…ธๅŒ–็ช’็ด (๏ฝฅNO)ใฎESRใซใ‚ˆใ‚‹่จผๆ˜Ž

    Get PDF
    The Bacillus cereus group of bacteria comprises soil-dwelling saprophytes but on occasion these bacteria can cause a wide range of diseases in humans, including food poisoning, systemic infections and highly lethal forms of anthrax. While anthrax is almost invariably caused by strains from a single evolutionary lineage, Bacillus anthracis, variation in the virulence properties of strains from other lineages has not been fully addressed. Using multi-locus sequence data from 667 strains, we reconstructed the evolutionary history of the B. cereus group in terms of both clonal inheritance and recombination. The strains included 155 clinical isolates representing B. anthracis, and isolates from emetic and diarrhoeal food poisoning, septicaemia and related infections, wound, and lung infections. We confirmed the existence of three major clades and found that clinical isolates of B. cereus (with the exception of emetic toxin-producing strains) are evenly distributed between and within clades 1 and 2. B. anthracis in particular and emetic toxin-producing B. cereus show more clonal structure and are restricted to clade 1. Our characterization of the patterns of genetic exchange showed that there exist partial barriers to gene flow between the three clades. The pathogenic strains do not exhibit atypically high or low rates of recombination, consistent with the opportunistic nature of most pathogenic infections. However, there have been a large number of recent imports in clade I of strains from external origins, which is indicative of an on-going shift in gene-flow boundaries for this clade. (C) 2009 Elsevier GmbH. All rights reserved

    Sustainable management of scab control through the integration of apple resistant cultivars in a low-fungicide input system

    Get PDF
    Evaluation of the sustainability of disease control strategies through experimental field studies is poorly documented. Plant genetic resistance to pathogens offers an interesting alternative to the use of pesticides, but pathogen populations are able to adapt, thus frequently resulting in the breakdown of the resistance. Partial resistance is considered to provide more durable resistance than major genes. However, partial resistance does not confer complete protection and its efficiency can also decrease. Developing appropriate strategies which integrate resistant cultivars into crop systems is therefore needed to increase the efficiency and durability of the resistance, whatever the kind of resistance. The aim of this study was to evaluate the relevance of the association of control methods in terms of increasing the efficiency and durability of two kinds of resistances: (i) partial resistance in the apple cultivar Reine des Reinettes and (ii) major resistance (Rvi6) in the apple cultivar Ariane, when planted in a region where the climatic conditions are very favourable to the disease. It was found that the removal of leaf litter in autumn together with spraying of fungicides in the case of moderate or high risks of scab infection resulted in a sustainable control of scab on Reine des Reinettes over a five-year period and delayed the breakdown of the major resistance Rvi6 of Ariane by virulent isolates

    Recombination and Population Structure in Salmonella enterica

    Get PDF
    Salmonella enterica is a bacterial pathogen that causes enteric fever and gastroenteritis in humans and animals. Although its population structure was long described as clonal, based on high linkage disequilibrium between loci typed by enzyme electrophoresis, recent examination of gene sequences has revealed that recombination plays an important evolutionary role. We sequenced around 10% of the core genome of 114 isolates of enterica using a resequencing microarray. Application of two different analysis methods (Structure and ClonalFrame) to our genomic data allowed us to define five clear lineages within S. enterica subspecies enterica, one of which is five times older than the other four and two thirds of the age of the whole subspecies. We show that some of these lineages display more evidence of recombination than others. We also demonstrate that some level of sexual isolation exists between the lineages, so that recombination has occurred predominantly between members of the same lineage. This pattern of recombination is compatible with expectations from the previously described ecological structuring of the enterica population as well as mechanistic barriers to recombination observed in laboratory experiments. In spite of their relatively low level of genetic differentiation, these lineages might therefore represent incipient species

    Inference of reticulate evolutionary histories by maximum likelihood: the performance of information criteria

    Get PDF
    Background: Maximum likelihood has been widely used for over three decades to infer phylogenetic trees from molecular data. When reticulate evolutionary events occur, several genomic regions may have conflicting evolutionary histories, and a phylogenetic network may provide a more adequate model for representing the evolutionary history of the genomes or species. A maximum likelihood (ML) model has been proposed for this case and accounts for both mutation within a genomic region and reticulation across the regions. However, the performance of this model in terms of inferring information about reticulate evolution and properties that affect this performance have not been studied. Results: In this paper, we study the effect of the evolutionary diameter and height of a reticulation event on its identifiability under ML. We find both of them, particularly the diameter, have a significant effect. Further, we find that the number of genes (which can be generalized to the concept of "non-recombining genomic regions") that are transferred across a reticulation edge affects its detectability. Last but not least, a fundamental challenge with phylogenetic networks is that they allow an arbitrary level of complexity, giving rise to the model selection problem. We investigate the performance of two information criteria, the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), for addressing this problem. We find that BIC performs well in general for controlling the model complexity and preventing ML from grossly overestimating the number of reticulation events. Conclusion: Our results demonstrate that BIC provides a good framework for inferring reticulate evolutionary histories. Nevertheless, the results call for caution when interpreting the accuracy of the inference particularly for data sets with particular evolutionary features

    Mosaic DNA imports with interspersions of recipient sequence after natural transformation of Helicobacter pylori

    Get PDF
    Helicobacter pylori colonizes the gastric mucosa of half of the human population, causing gastritis, ulcers, and cancer. H. pylori is naturally competent for transformation by exogenous DNA, and recombination during mixed infections of one stomach with multiple H. pylori strains generates extensive allelic diversity. We developed an in vitro transformation protocol to study genomic imports after natural transformation of H. pylori. The mean length of imported fragments was dependent on the combination of donor and recipient strain and varied between 1294 bp and 3853 bp. In about 10% of recombinant clones, the imported fragments of donor DNA were interrupted by short interspersed sequences of the recipient (ISR) with a mean length of 82 bp. 18 candidate genes were inactivated in order to identify genes involved in the control of import length and generation of ISR. Inactivation of the antimutator glycosylase MutY increased the length of imports, but did not have a significant effect on ISR frequency. Overexpression of mutY strongly increased the frequency of ISR, indicating that MutY, while not indispensable for ISR formation, is part of at least one ISR-generating pathway. The formation of ISR in H. pylori increases allelic diversity, and contributes to the uniquely low linkage disequilibrium characteristic of this pathogen

    Recent acquisition of Helicobacter pylori by Baka Pygmies

    Get PDF
    Both anatomically modern humans and the gastric pathogen Helicobacter pylori originated in Africa, and both species have been associated for at least 100,000 years. Seven geographically distinct H. pylori populations exist, three of which are indigenous to Africa: hpAfrica1, hpAfrica2, and hpNEAfrica. The oldest and most divergent population, hpAfrica2, evolved within San hunter-gatherers, who represent one of the deepest branches of the human population tree. Anticipating the presence of ancient H. pylori lineages within all hunter-gatherer populations, we investigated the prevalence and population structure of H. pylori within Baka Pygmies in Cameroon. Gastric biopsies were obtained by esophagogastroduodenoscopy from 77 Baka from two geographically separated populations, and from 101 non-Baka individuals from neighboring agriculturalist populations, and subsequently cultured for H. pylori. Unexpectedly, Baka Pygmies showed a significantly lower H. pylori infection rate (20.8%) than non-Baka (80.2%). We generated multilocus haplotypes for each H. pylori isolate by DNA sequencing, but were not able to identify Baka-specific lineages, and most isolates in our sample were assigned to hpNEAfrica or hpAfrica1. The population hpNEAfrica, a marker for the expansion of the Nilo-Saharan language family, was divided into East African and Central West African subpopulations. Similarly, a new hpAfrica1 subpopulation, identified mainly among Cameroonians, supports eastern and western expansions of Bantu languages. An age-structured transmission model shows that the low H. pylori prevalence among Baka Pygmies is achievable within the timeframe of a few hundred years and suggests that demographic factors such as small population size and unusually low life expectancy can lead to the eradication of H. pylori from individual human populations. The Baka were thus either H. pylori-free or lost their ancient lineages during past demographic fluctuations. Using coalescent simulations and phylogenetic inference, we show that Baka almost certainly acquired their extant H. pylori through secondary contact with their agriculturalist neighbors

    Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission.

    Get PDF
    Genome sequencing is revolutionizing clinical microbiology and our understanding of infectious diseases. Previous studies have largely relied on the sequencing of a single isolate from each individual. However, it is not clear what degree of bacterial diversity exists within, and is transmitted between individuals. Understanding this 'cloud of diversity' is key to accurate identification of transmission pathways. Here, we report the deep sequencing of methicillin-resistant Staphylococcus aureus among staff and animal patients involved in a transmission network at a veterinary hospital. We demonstrate considerable within-host diversity and that within-host diversity may rise and fall over time. Isolates from invasive disease contained multiple mutations in the same genes, including inactivation of a global regulator of virulence and changes in phage copy number. This study highlights the need for sequencing of multiple isolates from individuals to gain an accurate picture of transmission networks and to further understand the basis of pathogenesis.Thanks to Dr Alex Oโ€™Neill, University of Leeds and Dr Matthew Ellington, Public Health England for provision of RN4220 and RN4200mutS. We thank the core sequencing and informatics team at the Wellcome Trust Sanger Institute for sequencing of the isolates described in this study. This work was supported by a Medical Research Council Partnership grant (G1001787/1) held between the Department of Veterinary Medicine, University of Cambridge (M.A.H.), the School of Clinical Medicine, University of Cambridge (S.J.P.), the Moredun Research Institute, and the Wellcome Trust Sanger Institute (J.P. and S.J.P). S.J.P. receives support from the NIHR Cambridge Biomedical Research Centre. M.T.G.H., S.R.H. and J.P. were funded by Wellcome Trust grant no. 098051. G.G.R.M. was funded by an MRC studentship.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms756

    Using functional genomics to decipher the complexity of microbial pathogenicity

    Get PDF
    From the first identification of bacteria as a causative agent of disease, researchers have been developing methods and techniques to understand their pathogenic processes. For decades, this work has been limited to looking at a small number of genetically manipulatable isolates in in vitro assays or animal models of infection. Despite these limitations such work has facilitated the development of successful therapeutic strategies, most notably vaccines that target specific virulence-related features. There are however many antimicrobial resistant pathogens for which vaccination strategies have not worked, as we simply do not know enough about how they cause disease. We are however at the dawn of a new era in the study of microbial pathogenicity, where large collections of bacteria isolated directly from human infections can be sequenced and assayed to identify the bacterial features that affect disease severity in humans. Here, we describe our attempt to perform such a study focussed on the major human pathogen Staphylococcus aureus, which demonstrates the step changes such approaches can make to understanding microbial pathogenicity
    • โ€ฆ
    corecore