1,059 research outputs found

    Reconstruction of eolian bed forms and paleocurrents from cross-bedded strata at Victoria Crater, Meridiani Planum, Mars

    Get PDF
    Outcrop exposures imaged by the Opportunity rover at Victoria Crater, a 750 m diameter crater in Meridiani Planum, are used to delineate sedimentary structures and further develop a dune-interdune depositional model for the region. The stratigraphy at Victoria Crater, observed during Opportunity's partial traverse of its rim, includes the best examples of meter-scale eolian cross bedding observed on Mars to date. The Cape St. Mary promontory, located at the southern end of the rim traverse, is characterized by meter-scale sets of trough cross bedding, suggesting northward migrating sinuous-crested bed forms. Cape St. Vincent, which is located at the opposite end of the traverse, shows tabular-planar stratification indicative of climbing bed forms with meter- to decameter-scale dune heights migrating southward. Promontories located between Cape St. Mary and Cape St. Vincent contain superposed stratigraphic units with northward and southward dipping beds separated by outcrop-scale bounding surfaces. These bounding surfaces are interpreted to be either reactivation and/or superposition surfaces in a complex erg sea. Any depositional model used to explain the bedding must conform to reversing northward and southward paleomigration directions and include multiple scales of bed forms. In addition to stratified outcrop, a bright diagenetic band is observed to overprint bedding and to lie on an equipotential parallel to the preimpact surface. Meter-scale cross bedding at Victoria Crater is similar to terrestrial eolian deposits and is interpreted as a dry dune field, comparable to Jurassic age eolian deposits in the western United States

    Prognostic implications of left ventricular global longitudinal strain in heart failure patients with narrow QRS complex treated with cardiac resynchronization therapy: a subanalysis of the randomized EchoCRT trial

    Get PDF
    Aim: Left ventricular (LV) global longitudinal strain (GLS) reflects LV systolic function and correlates inversely with the extent of LV myocardial scar and fibrosis. The present subanalysis of the Echocardiography Guided CRT trial investigated the prognostic value of LV GLS in patients with narrow QRS complex. Methods and results: Left ventricular (LV) global longitudinal strain (GLS) was measured on the apical 2-, 4- and 3-chamber views using speckle tracking analysis. Measurement of baseline LV GLS was feasible in 755 patients (374 with cardiac resynchronization therapy (CRT)-ON and 381 with CRT-OFF). The median value of LV GLS in the overall population was 7.9%, interquartile range 6.2–10.1%. After a mean follow-up period of 19.4 months, 95 patients in the CRT-OFF group and 111 in the CRT-ON group reached the combined primary endpoint of all-cause mortality and heart failure hospitalization. Each 1% absolute unit decrease in LV GLS was independently associated with 11% increase in the risk to reach the primary endpoint (Hazard ratio 1.11; 95% confidence interval 95% 1.04–1.17, P < 0.001), after adjusting for ischaemic cardiomyopathy and randomization treatment among other clinically relevant variables. When categorizing patients according to quartiles of LV GLS, the primary endpoint occurred more frequently in patients in the lowest quartile (<6.2%) treated with CRT-ON vs. CRT-OFF (45.6% vs. 28.7%, P = 0.009) whereas, no differences were observed in patients with LV GLS ≄6.2% treated with CRT-OFF vs. CRT-ON (23.7% vs. 24.5%, respectively; P  = 0.62). Conclusion: Low LV GLS is associated with poor outcome in heart failure patients with QRS width <130 ms, independent of randomization to CRT or not. Importantly, in the group of patients with the lowest LV GLS quartile, CRT may have a detrimental effect on clinical outcomes

    A network analysis to identify pathophysiological pathways distinguishing ischaemic from non-ischaemic heart failure

    Get PDF
    Aims Heart failure (HF) is frequently caused by an ischaemic event (e.g. myocardial infarction) but might also be caused by a primary disease of the myocardium (cardiomyopathy). In order to identify targeted therapies specific for either ischaemic or non‐ischaemic HF, it is important to better understand differences in underlying molecular mechanisms. Methods and results We performed a biological physical protein–protein interaction network analysis to identify pathophysiological pathways distinguishing ischaemic from non‐ischaemic HF. First, differentially expressed plasma protein biomarkers were identified in 1160 patients enrolled in the BIOSTAT‐CHF study, 715 of whom had ischaemic HF and 445 had non‐ischaemic HF. Second, we constructed an enriched physical protein–protein interaction network, followed by a pathway over‐representation analysis. Finally, we identified key network proteins. Data were validated in an independent HF cohort comprised of 765 ischaemic and 100 non‐ischaemic HF patients. We found 21/92 proteins to be up‐regulated and 2/92 down‐regulated in ischaemic relative to non‐ischaemic HF patients. An enriched network of 18 proteins that were specific for ischaemic heart disease yielded six pathways, which are related to inflammation, endothelial dysfunction superoxide production, coagulation, and atherosclerosis. We identified five key network proteins: acid phosphatase 5, epidermal growth factor receptor, insulin‐like growth factor binding protein‐1, plasminogen activator urokinase receptor, and secreted phosphoprotein 1. Similar results were observed in the independent validation cohort. Conclusions Pathophysiological pathways distinguishing patients with ischaemic HF from those with non‐ischaemic HF were related to inflammation, endothelial dysfunction superoxide production, coagulation, and atherosclerosis. The five key pathway proteins identified are potential treatment targets specifically for patients with ischaemic HF

    Genetic Risk and Atrial Fibrillation in Patients with Heart Failure

    Get PDF
    Aims: To study the association between an atrial fibrillation (AF) genetic risk score with prevalent AF and all-cause mortality in patients with heart failure. Methods and results: An AF genetic risk score was calculated in 3759 European ancestry individuals (1783 with sinus rhythm, 1976 with AF) from the BIOlogy Study to TAilored Treatment in Chronic Heart Failure (BIOSTAT-CHF) by summing 97 single nucleotide polymorphism (SNP) alleles (ranging from 0–2) weighted by the natural logarithm of the relative SNP risk from the latest AF genome-wide association study. Further, we assessed AF risk variance explained by additive SNP variation, and performance of clinical or genetic risk factors, and the combination in classifying AF prevalence. AF was classified as AF or atrial flutter (AFL) at baseline electrocardiogram and/or a history of AF or AFL. The genetic risk score was associated with AF after multivariable adjustment. Odds ratio for AF prevalence per 1-unit increase genetic risk score was 2.12 (95% confidence interval 1.84–2.45, P = 2.15 × 10−24) in the total cohort, 2.08 (1.72–2.50, P = 1.30 × 10−14) in heart failure with reduced ejection fraction (HFrEF) and 2.02 (1.37–2.99, P = 4.37 × 10−4) in heart failure with preserved ejection fraction (HFpEF). AF-associated loci explained 22.9% of overall AF SNP heritability. Addition of the genetic risk score to clinical risk factors increased the C-index by 2.2% to 0.721. Conclusions: The AF genetic risk score was associated with increased AF prevalence in HFrEF and HFpEF. Genetic variation accounted for 22.9% of overall AF SNP heritability. Addition of genetic risk to clinical risk improved model performance in classifying AF prevalence

    The Shapes of Flux Domains in the Intermediate State of Type-I Superconductors

    Full text link
    In the intermediate state of a thin type-I superconductor magnetic flux penetrates in a disordered set of highly branched and fingered macroscopic domains. To understand these shapes, we study in detail a recently proposed "current-loop" (CL) model that models the intermediate state as a collection of tense current ribbons flowing along the superconducting-normal interfaces and subject to the constraint of global flux conservation. The validity of this model is tested through a detailed reanalysis of Landau's original conformal mapping treatment of the laminar state, in which the superconductor-normal interfaces are flared within the slab, and of a closely-related straight-lamina model. A simplified dynamical model is described that elucidates the nature of possible shape instabilities of flux stripes and stripe arrays, and numerical studies of the highly nonlinear regime of those instabilities demonstrate patterns like those seen experimentally. Of particular interest is the buckling instability commonly seen in the intermediate state. The free-boundary approach further allows for a calculation of the elastic properties of the laminar state, which closely resembles that of smectic liquid crystals. We suggest several new experiments to explore of flux domain shape instabilities, including an Eckhaus instability induced by changing the out-of-plane magnetic field, and an analog of the Helfrich-Hurault instability of smectics induced by an in-plane field.Comment: 23 pages, 22 bitmapped postscript figures, RevTex 3.0, submitted to Phys. Rev. B. Higher resolution figures may be obtained by contacting the author

    Neural circuitry engaged during unsuccessful motor inhibition in pediatric bipolar disorder

    Get PDF
    Objective: Deficits in motor inhibition may contribute to impulsivity and irritability in children with bipolar disorder (BPD). Therefore, studies of the neural circuitry engaged during failed motor inhibition in pediatric BPD may contribute to our understanding of the pathophysiology of the illness. We tested the hypothesis that children with BPD and controls would differ in ventral prefrontal cortex (vPFC), striatal, and anterior cingulate activation during unsuccessful motor inhibition. We also compared activation in medicated vs. unmedicated children with BPD, and in children with BPD and ADHD (BPD+ADHD) vs. those with BPD but without ADHD (BPD-ADHD). Method: Event-related fMRI study comparing neural activation in children with BPD and controls while they performed a motor inhibition task. The sample included 26 children with BPD (13 unmedicated, 15 with ADHD) and 17 age, gender, and IQ matched controls. Results: On failed inhibitory trials, controls showed greater bilateral striatal and right vPFC activation than did patients. While our findings were somewhat more prominent in unmedicated than medicated, patients, and in BPD+ADHD than BPD-ADHD, the findings did not differ significantly (?) among these subgroups of children with BPD. Conclusions: Compared to controls, children with BPD may have deficits in their ability to engage striatal structures and right vPFC during unsuccessful inhibition. (this reads confusingly to me—they’re deficient in their capacity to engage structures when they’re behaviorally unsuccessful? Perhaps reword?) Further research is needed to determine whether these deficits play a role in the emotional and behavioral dysregulation characteristic of BPD

    U.S. stock market interaction network as learned by the Boltzmann Machine

    Full text link
    We study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented analysis shows that binarization preserves market correlation structure. Properties of distributions of external fields and couplings as well as industry sector clustering structure are studied for different historical dates and moving window sizes. We found that a heavy positive tail in the distribution of couplings is responsible for the sparse market clustering structure. We also show that discrepancies between the model parameters might be used as a precursor of financial instabilities.Comment: 15 pages, 17 figures, 1 tabl

    Sinteza i bioloơko djelovanje novih 1-benzil i 1-benzoil 3-heterocikličkih derivata indola

    Get PDF
    Starting from 1-benzyl- (2a) and 1-benzoyl-3-bromoacetyl indoles (2b) new heterocyclic, 2-thioxoimidazolidine (4a,b), imidazolidine-2,4-dione (5a,b), pyrano(2,3-d)imidazole (8a,b and 9a,b), 2-substituted quinoxaline (11a,b–17a,b) and triazolo(4,3-a)quinoxaline derivatives (18a,b and 19a,b) were synthesized and evaluated for their antimicrobial and anticancer activities. Antimicrobial activity screening performed with concentrations of 0.88, 0.44 and 0.22 g mm2 showed that 3-(1-substituted indol-3-yl)quinoxalin-2(1H)ones (11a,b) and 2-(4-methyl piperazin-1-yl)-3-(1-substituted indol-3-yl) quinoxalines (15a,b) were the most active of all the tested compounds towards P. aeruginosa, B. cereus and S. aureus compared to the reference drugs cefotaxime and piperacillin, while 2-chloro-3-(1-substituted indol-3-yl)quinoxalines (12a,b) were the most active against C. albicans compared to the reference drug nystatin. On the other hand, 2-chloro-3-(1-benzyl indol-3-yl) quinoxaline (12a) display potent efficacy against ovarian cancer xenografts in nude mice with tumor growth suppression of 100 0.3 %.U radu je opisana sinteza, antimikrobno i antitumorsko djelovanje heterocikličkih derivata indola. Polazeći iz 1-benzil- i 1-benzoil-3-bromacetil indola (2a i 2b) sintetizirani su novi heterociklički spojevi 2-tioksoimidazolidini (4a,b), imidazolidin-2,4-dioni (5a,b), pirano(2,3-d)imidazoli (8a,b i 9a,b), 2-supstituirani kinoksalini (11a,b–17a,b) i triazolo(4,3-a)kinoksalini (18a,b i 19a,b). Sintetizirani spojevi testirani su na antimikrobno i antitumorsko djelovanje. Ispitivanje antimikrobnog djelovanja provedeno je s koncentracijama otopina 0,88, 0,44 i 0,22 g mm2 i uspoređeno s referentnim lijekovima cefotaksimom i piperacilinom. Rezultati pokazuju da su 3-(1-supstituirani indol-3-il)kinoksalin-2(1H)oni (11a,b) i 2-(4-metil piperazin-1-il)-3-(1-supstituirani indol-3-il) kinoksalini (15a,b) najaktivniji spojevi na sojeve P. aeruginosa, B. cereus i S. aureus, dok su 2-klor-3-(1-supstituirani indol-3-il)kinoksalini (12a,b) najaktivniji na C. albicans (usporedba s nistatinom). Osim toga, 2-klor-3-(1-benzil indol-3-il) kinoksalin (12a) pokazuje veliku učinkovitost na tumore ovarija miơeva (supresija rasta tumora 100 0,3 %)

    Stability of periodic domain structures in a two-dimensional dipolar model

    Full text link
    We investigate the energetic ground states of a model two-phase system with 1/r^3 dipolar interactions in two dimensions. The model exhibits spontaneous formation of two kinds of periodic domain structure. A striped domain structure is stable near half filling, but as the area fraction is changed, a transition to a hexagonal lattice of almost-circular droplets occurs. The stability of the equilibrium striped domain structure against distortions of the boundary is demonstrated, and the importance of hexagonal distortions of the droplets is quantified. The relevance of the theory for physical surface systems with elastic, electrostatic, or magnetostatic 1/r^3 interactions is discussed.Comment: Revtex (preprint style, 19 pages) + 4 postscript figures. A version in two-column article style with embedded figures is available at http://electron.rutgers.edu/~dhv/preprints/index.html#ng_do
    • 

    corecore