233 research outputs found

    The Shimura lift and congruences for modular forms with the eta multiplier

    Full text link
    The Shimura correspondence is a fundamental tool in the study of half-integral weight modular forms. In this paper, we prove a Shimura-type correspondence for spaces of half-integral weight cusp forms which transform with a power of the Dedekind eta multiplier twisted by a Dirichlet character. We prove that the lift of a cusp form of weight λ+1/2\lambda+1/2 and level NN has weight 2λ2\lambda and level 6N6N, and is new at the primes 22 and 33 with specified Atkin-Lehner eigenvalues. This precise information leads to arithmetic applications. For a wide family of spaces of half-integral weight modular forms we prove the existence of infinitely many primes \ell which give rise to quadratic congruences modulo arbitrary powers of \ell.Comment: 44 page

    Shifted distinct-part partition identities in arithmetic progressions

    Full text link
    The partition function p(n)p(n), which counts the number of partitions of a positive integer nn, is widely studied. Here, we study partition functions pS(n)p_S(n) that count partitions of nn into distinct parts satisfying certain congruence conditions. A shifted partition identity is an identity of the form pS1(nH)=pS2(n)p_{S_1}(n-H) = p_{S_2}(n) for all nn in some arithmetic progression. Several identities of this type have been discovered, including two infinite families found by Alladi. In this paper, we use the theory of modular functions to determine the necessary and sufficient conditions for such an identity to exist. In addition, for two specific cases, we extend Alladi's theorem to other arithmetic progressions

    Transcatheter Heart Valve Leaflet Assembly Tooling Improvement Final Design Report

    Get PDF
    Statement of Confidentiality: The complete senior project report was submitted to the project advisor and sponsor. The results of this project are of a confidential nature and will not be published at this time

    Validity of Critical Velocity Concept for Weighted Sprinting Performance

    Get PDF
    International Journal of Exercise Science 11(4): 900-909, 2018. We investigated the validity of a recently developed equation for predicting sprinting times of various tactical loads based upon the performance of a running 3-min all-out exercise test (3MT). Thirteen recreationally trained participants completed the running 3MT to determine critical velocity (CV) and finite running capacity for running velocities exceeding CV (D’). Two subsequent counterbalanced loaded sprints of 800 and 1000 m distances with 20 and 15% of their body mass, respectively, were evaluated. Estimated times (t, sec) for running 800 and 1000 m with a tactical load was derived using t = (D – D’)/CV. Critical velocity adjusted for an added load using the following regression equation: original CV + (-0.0638 x %load) + 0.6982, D was 800 or 1000 m, and whole percentage load was ~15 or 20% of the participant\u27s body mass. From the 3MT, CV (3.80 ±0.5 m.s-1) and D’(200 ±49.88 m) values were determined.The typical error of predicting actual times for the 800 and 1000 m loaded sprints were 5.6 and 10.1 s, with corresponding ICCs of 0.95 and 0.87, and coefficient of variations of 2.9 and 4.3%. The effect size differences between estimated and actual sprint times were small (0.27) and moderate (0.60) for 800 and 1000 m, respectively. The adjustment to CV through the regression equation yields small to moderate overestimates of maximally loaded sprint times for distances of 800 and 1000 m. Whether such errors remain pervasive for prescribing high-intensity interval training is unclear and requires further investigation

    Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species

    Get PDF
    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of closely related organisms, and discuss how it could be extended to future studies of multilocus rDNA systems. [concerted evolution; genome hydridisation; phylogenetic analysis; ribosomal DNA; whole genome sequencing; yeast]

    Monitoring interval-training responses for swimming using the 3-min all-out exercise test.

    Get PDF
    International Journal of Exercise Science 9(5): 545-553, 2016. The purpose of this study was to determine whether the 3-min all-out exercise test (3MT) could be applied to create an off-season high intensity, interval training (HIIT) program to improve performance, specifically critical velocity (CV), in the sport of swimming. We tested a group of competitive female swimmers (age = 19 ± 1 yrs, height = 169 ± 7 cm, body mass = 69 ± 9 kg) to determine their swimming CV and finite energy capacity \u3eCV (D’), and created a four week (2 d∙wk-1) personalized interval training program. Participants were divided in to two groups, a 150yd interval group (n =11) and a 250yd interval group (n =6). Each group completed a series of intervals designed to deplete a given percentage of D’ at velocities exceeding CV. A 3MT following the training period was administered to assess for any changes in CV, D’, average velocity during the first 150s of the test (V150s) and total distance traveled (D). Both groups improved their CV (+0.04 m∙s-1), V150s (+0.03 m∙s-1) and D (+8.64 m) (p \u3c 0.05), however, significant interactions for D’ between groups was not observed (p \u3e 0.05). We conclude that HIIT prescriptions based on a 3MT can improve swim performance over a four-week period. Future research on the fidelity of measuring CV and D’ using a swimming 3MT is needed to help aid practitioners in interpreting true training adaptations

    Оценка творческого потенциала сотрудников предприятия

    Get PDF
    Данная статья посвящена развитию творческого потенциала у сотрудников предприятий. Проанализированы понятие творческого потенциала, его исследования и методы. Рассмотрены и выделены формы исторического развития творческой активности
    corecore