106 research outputs found

    Percolation in two-species antagonistic random sequential adsorption in two dimensions

    Full text link
    We consider two-species random sequential adsorption (RSA) in which species A and B adsorb randomly on a lattice with the restriction that opposite species cannot occupy nearest-neighbor sites. When the probability xAx_A of choosing an A particle for an adsorption trial reaches a critical value 0.626441(1)0.626441(1), the A species percolates and/or the blocked sites X (those with at least one A and one B nearest neighbor) percolate. Analysis of the size-distribution exponent τ\tau, the wrapping probabilities, and the excess cluster number shows that the percolation transition is consistent with that of ordinary percolation. We obtain an exact result for the low xB=1xAx_B = 1 - x_A jamming behavior: θA=1xB+b2xB2+O(xB3)\theta_A = 1 - x_B +b_2 x_B^2+\mathcal{O}(x_B^3), θB=xB/(z+1)+O(xB2)\theta_B = x_B/(z+1)+\mathcal{O}(x_B^2) for a zz-coordinated lattice, where θA\theta_A and θB\theta_B are respectively the saturation coverages of species A and B. We also show how differences between wrapping probabilities of A and X clusters, as well as differences in the number of A and X clusters, can be used to find the transition point accurately. For the one-dimensional case a three-site approximation appears to provide exact results for the coverages

    Descemet Membrane Endothelial Keratoplasty versus Ultrathin Descemet Stripping Automated Endothelial Keratoplasty A Multicenter Randomized Controlled Clinical Trial

    Get PDF
    Purpose: To compare best spectacle-corrected visual acuity (BSCVA), endothelial cell density (ECD), refractive astigmatism, and complications after Descemet membrane endothelial keratoplasty (DMEK) and ultrathin Descemet stripping automated endothelial keratoplasty (UT-DSAEK). Design: Prospective, multicenter randomized controlled trial. Participants: Fifty-four pseudophakic eyes of 54 patients with corneal endothelial dysfunction resulting from Fuchs endothelial corneal dystrophy were enrolled in 6 corneal centers in The Netherlands. Methods: Participants were allocated to DMEK (n = 29) or UT-DSAEK (n = 25) using minimization randomization based on preoperative BSCVA, recipient central corneal thickness, gender, age, and institution. Donor corneas were prestripped and precut for DMEK and UT-DSAEK, respectively. Six corneal surgeons participated in this study. Main Outcome Measures: The primary outcome measure was BSCVA at 12 months after surgery. Results: Central graft thickness of UT-DSAEK lamellae measured 101 mu m (95% confidence interval [CI], 90-112 mu m). Best spectacle-corrected visual acuity did not differ significantly between DMEK and UT-DSAEK groups at 3 months (0.15 logarithm of the minimum angle of resolution [logMAR] [95% CI 0.08-0.22 logMAR] vs. 0.22 logMAR [95% CI 0.16-0.27 logMAR]; P = 0.15), 6 months (0.11 logMAR [95% CI 0.05-0.17 logMAR] vs. 0.16 logMAR [95% CI 0.12-0.21 logMAR]; P = 0.20), and 12 months (0.08 logMAR [95% CI 0.03-0.14 logMAR] vs. 0.15 logMAR [95% CI 0.10-0.19 logMAR]; P = 0.06). Twelve months after surgery, the percentage of eyes reaching 20/25 Snellen BSCVA was higher in DMEK compared with UT-DSAEK (66% vs. 33%; P = 0.02). Endothelial cell density did not differ significantly 12 months after DMEK and UT-DSAEK (1870 cells/mm 2 [95% CI 1670-2069 cells/mm(2)] vs. 1612 cells/mm(2) [95% CI 1326-1898 cells/mm(2)]; P = 0.12). Both techniques induced a mild hyperopic shift (12 months: +0.22 diopter [D; 95% CI -0.23 to 0.68 D] for DMEK vs. +0.58 D [95% CI 0.13-1.03 D] for UT-DSAEK; P = 0.34). Conclusions: Descemet membrane endothelial keratoplasty and UT-DSAEK did not differ significantly in mean BSCVA, but the percentage of eyes achieving 20/25 Snellen vision was significantly higher with DMEK. Endothelial cell loss did not differ significantly between the treatment groups, and both techniques induced a minimal hyperopic shift. (C) 2020 by the American Academy of Ophthalmolog

    Radio Astronomy in LSST Era

    Full text link
    A community meeting on the topic of "Radio Astronomy in the LSST Era" was hosted by the National Radio Astronomy Observatory in Charlottesville, VA (2013 May 6--8). The focus of the workshop was on time domain radio astronomy and sky surveys. For the time domain, the extent to which radio and visible wavelength observations are required to understand several classes of transients was stressed, but there are also classes of radio transients for which no visible wavelength counterpart is yet known, providing an opportunity for discovery. From the LSST perspective, the LSST is expected to generate as many as 1 million alerts nightly, which will require even more selective specification and identification of the classes and characteristics of transients that can warrant follow up, at radio or any wavelength. The LSST will also conduct a deep survey of the sky, producing a catalog expected to contain over 38 billion objects in it. Deep radio wavelength sky surveys will also be conducted on a comparable time scale, and radio and visible wavelength observations are part of the multi-wavelength approach needed to classify and understand these objects. Radio wavelengths are valuable because they are unaffected by dust obscuration and, for galaxies, contain contributions both from star formation and from active galactic nuclei. The workshop touched on several other topics, on which there was consensus including the placement of other LSST "Deep Drilling Fields," inter-operability of software tools, and the challenge of filtering and exploiting the LSST data stream. There were also topics for which there was insufficient time for full discussion or for which no consensus was reached, which included the procedures for following up on LSST observations and the nature for future support of researchers desiring to use LSST data products.Comment: Conference summary, 29 pages, 1 figure; to be published in the Publ. Astron. Soc. Pacific; full science program and presentations available at http://science.nrao.edu/science/event/RALSST201

    Quality of vision and vision-related quality of life after Descemet membrane endothelial keratoplasty:a randomized clinical trial

    Get PDF
    PURPOSE: To compare quality of vision and vision‐related quality of life (QOL) in patients undergoing Descemet membrane endothelial keratoplasty (DMEK) or ultrathin Descemet stripping automated endothelial keratoplasty (DSAEK). METHODS: Fifty‐four eyes of 54 patients with Fuchs' dystrophy from six corneal clinics in the Netherlands were randomized to DMEK or ultrathin DSAEK and examined preoperatively, and 3, 6 and 12 months postoperatively. Main outcome measures were corneal higher‐order aberrations (HOAs), contrast sensitivity, straylight and vision‐related QOL. RESULTS: Posterior corneal HOAs decreased after DMEK and increased after ultrathin DSAEK (p ≤ 0.001) 3 months after surgery and correlated positively with best spectacle‐corrected visual acuity (12 months: r = 0.29, p = 0.04). Anterior and total corneal HOAs did not differ significantly between both techniques at any time point. Contrast sensitivity was better (p = 0.01), and straylight was lower (p = 0.01) 3 months after DMEK compared with ultrathin DSAEK; 95% confidence interval [CI] of log(cs) 1.10–1.35 versus 95% CI: 0.84 to 1.12, and 95% CI: log(s) 1.18 to 1.43 versus 95% CI: 1.41 to 1.66, respectively. Both were comparable at later time points. Vision‐related QOL (scale 0–100) did not differ significantly between both groups at any time point and improved significantly at 3 months (β = 12 [95% CI: 7 to 16]; p < 0.001), and subsequently between 3 and 12 months (β = 5 [95% CI: 0 to 9]; p = 0.06). CONCLUSIONS: Descemet membrane endothelial keratoplasty (DMEK) results in lower posterior corneal HOAs compared with ultrathin DSAEK. Contrast sensitivity and straylight recover faster after DMEK but reach similar levels with both techniques at 1 year. Vision‐related QOL improved significantly after surgery, but did not differ between both techniques

    Conserving the World’s Megafauna and Biodiversity: The Fierce Urgency of Now

    Get PDF
    First paragraph: In our recent perspective article, we noted that most (approximately 60 percent) terrestrial large carnivore and large herbivore species are now threatened with extinction, and we offered a 13-point declaration designed to promote and guide actions to save these iconic mammalian megafauna (Ripple et al. 2016). Some may worry that a focus on saving megafauna might undermine efforts to conserve biodiversity more broadly. We believe that all dimensions of biodiversity are important and that efforts to conserve megafauna are not in themselves sufficient to halt the dispiriting trends of species and population losses in recent decades. From 1970 to 2012, a recent global analysis showed a 58 percent overall decline in vertebrate population abundance (WWF 2016). Bold and varied approaches are necessary to conserve what remains of Earth’s biodiversity, and our declaration in no way disputes the value of specific conservation initiatives targeting other taxa. Indeed, the evidence is clear that without massively scaling up conservation efforts for all species, we will fail to achieve internationally agreed-upon targets for biodiversity (Tittensor et al. 2014).Additional co-authors: Holly T Dublin, James A Estes, Kristoffer T Everatt, Mauro Galetti, Varun R Goswami, Matt W Hayward, Simon Hedges, Michael Hoffmann, Luke TB Hunter, Graham IH Kerley, Mike Letnic, Taal Levi, John C Morrison, Michael Paul Nelson, Thomas M Newsome, Luke Painter, Robert M Pringle, Christopher J Sandom, John Terborgh, Adrian Treves, Blaire Van Valkenburgh, John A Vucetich, Aaron J Wirsing, Arian D Wallach, Christopher Wolf, Rosie Woodroffe, Hillary Young, And Li Zhan

    Teaching clinical informatics to third-year medical students: negative results from two controlled trials

    Get PDF
    BACKGROUND: Prior educational interventions to increase seeking evidence by medical students have been unsuccessful. METHODS: We report two quasirandomized controlled trials to increase seeking of medical evidence by third-year medical students. In the first trial (1997–1998), we placed computers in clinical locations and taught their use in a 6-hour course. Based on negative results, we created SUMSearch(TM), an Internet site that automates searching for medical evidence by simultaneous meta-searching of MEDLINE and other sites. In the second trial (1999–2000), we taught SUMSearch's use in a 5½-hour course. Both courses were taught during the medicine clerkship. For each trial, we surveyed the entire third-year class at 6 months, after half of the students had taken the course (intervention group). The students who had not received the intervention were the control group. We measured self-report of search frequency and satisfaction with search quality and speed. RESULTS: The proportion of all students who reported searching at least weekly for medical evidence significantly increased from 19% (1997–1998) to 42% (1999–2000). The proportion of all students who were satisfied with their search results increased significantly between study years. However, in neither study year did the interventions increase searching or satisfaction with results. Satisfaction with the speed of searching was 27% in 1999–2000. This did not increase between studies years and was not changed by the interventions. CONCLUSION: None of our interventions affected searching habits. Even with automated searching, students report low satisfaction with search speed. We are concerned that students using current strategies for seeking medical evidence will be less likely to seek and appraise original studies when they enter medical practice and have less time

    Saving the world’s terrestrial megafauna

    Get PDF
    From the late Pleistocene to the Holocene, and now the so called Anthropocene, humans have been driving an ongoing series of species declines and extinctions (Dirzo et al. 2014). Large-bodied mammals are typically at a higher risk of extinction than smaller ones (Cardillo et al. 2005). However, in some circumstances terrestrial megafauna populations have been able to recover some of their lost numbers due to strong conservation and political commitment, and human cultural changes (Chapron et al. 2014). Indeed many would be in considerably worse predicaments in the absence of conservation action (Hoffmann et al. 2015). Nevertheless, most mammalian megafauna face dramatic range contractions and population declines. In fact, 59% of the world’s largest carnivores (≥ 15 kg, n = 27) and 60% of the world’s largest herbivores (≥ 100 kg, n = 74) are classified as threatened with extinction on the International Union for the Conservation of Nature (IUCN) Red List (supplemental table S1 and S2). This situation is particularly dire in sub-Saharan Africa and Southeast Asia, home to the greatest diversity of extant megafauna (figure 1). Species at risk of extinction include some of the world’s most iconic animals—such as gorillas, rhinos, and big cats (figure 2 top row)—and, unfortunately, they are vanishing just as science is discovering their essential ecological roles (Estes et al. 2011). Here, our objectives are to raise awareness of how these megafauna are imperiled (species in supplemental table S1 and S2) and to stimulate broad interest in developing specific recommendations and concerted action to conserve them

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    Aim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW). Location: Global. Taxon: All extant mammal species. Methods: Range maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species). Results: Range maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use. Main conclusion: Expert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control.Fil: Marsh, Charles J.. Yale University; Estados UnidosFil: Sica, Yanina. Yale University; Estados UnidosFil: Burguin, Connor. University of New Mexico; Estados UnidosFil: Dorman, Wendy A.. University of Yale; Estados UnidosFil: Anderson, Robert C.. University of Yale; Estados UnidosFil: del Toro Mijares, Isabel. University of Yale; Estados UnidosFil: Vigneron, Jessica G.. University of Yale; Estados UnidosFil: Barve, Vijay. University Of Florida. Florida Museum Of History; Estados UnidosFil: Dombrowik, Victoria L.. University of Yale; Estados UnidosFil: Duong, Michelle. University of Yale; Estados UnidosFil: Guralnick, Robert. University Of Florida. Florida Museum Of History; Estados UnidosFil: Hart, Julie A.. University of Yale; Estados UnidosFil: Maypole, J. Krish. University of Yale; Estados UnidosFil: McCall, Kira. University of Yale; Estados UnidosFil: Ranipeta, Ajay. University of Yale; Estados UnidosFil: Schuerkmann, Anna. University of Yale; Estados UnidosFil: Torselli, Michael A.. University of Yale; Estados UnidosFil: Lacher, Thomas. Texas A&M University; Estados UnidosFil: Wilson, Don E.. National Museum of Natural History; Estados UnidosFil: Abba, Agustin Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Aguirre, Luis F.. Universidad Mayor de San Simón; BoliviaFil: Arroyo Cabrales, Joaquín. Instituto Nacional de Antropología E Historia, Mexico; MéxicoFil: Astúa, Diego. Universidade Federal de Pernambuco; BrasilFil: Baker, Andrew M.. Queensland University of Technology; Australia. Queensland Museum; AustraliaFil: Braulik, Gill. University of St. Andrews; Reino UnidoFil: Braun, Janet K.. Oklahoma State University; Estados UnidosFil: Brito, Jorge. Instituto Nacional de Biodiversidad; EcuadorFil: Busher, Peter E.. Boston University; Estados UnidosFil: Burneo, Santiago F.. Pontificia Universidad Católica del Ecuador; EcuadorFil: Camacho, M. Alejandra. Pontificia Universidad Católica del Ecuador; EcuadorFil: de Almeida Chiquito, Elisandra. Universidade Federal do Espírito Santo; BrasilFil: Cook, Joseph A.. University of New Mexico; Estados UnidosFil: Cuéllar Soto, Erika. Sultan Qaboos University; OmánFil: Davenport, Tim R. B.. Wildlife Conservation Society; TanzaniaFil: Denys, Christiane. Muséum National d'Histoire Naturelle; FranciaFil: Dickman, Christopher R.. The University Of Sydney; AustraliaFil: Eldridge, Mark D. B.. Australian Museum; AustraliaFil: Fernandez Duque, Eduardo. University of Yale; Estados UnidosFil: Francis, Charles M.. Environment And Climate Change Canada; CanadáFil: Frankham, Greta. Australian Museum; AustraliaFil: Freitas, Thales. Universidade Federal do Rio Grande do Sul; BrasilFil: Friend, J. Anthony. Conservation And Attractions; AustraliaFil: Giannini, Norberto Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Gursky-Doyen, Sharon. Texas A&M University; Estados UnidosFil: Hackländer, Klaus. Universitat Fur Bodenkultur Wien; AustriaFil: Hawkins, Melissa. National Museum of Natural History; Estados UnidosFil: Helgen, Kristofer M.. Australian Museum; AustraliaFil: Heritage, Steven. University of Duke; Estados UnidosFil: Hinckley, Arlo. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Holden, Mary. American Museum of Natural History; Estados UnidosFil: Holekamp, Kay E.. Michigan State University; Estados UnidosFil: Humle, Tatyana. University Of Kent; Reino UnidoFil: Ibáñez Ulargui, Carlos. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Jackson, Stephen M.. Australian Museum; AustraliaFil: Janecka, Mary. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Jenkins, Paula. Natural History Museum; Reino UnidoFil: Juste, Javier. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Leite, Yuri L. R.. Universidade Federal do Espírito Santo; BrasilFil: Novaes, Roberto Leonan M.. Universidade Federal do Rio de Janeiro; BrasilFil: Lim, Burton K.. Royal Ontario Museum; CanadáFil: Maisels, Fiona G.. Wildlife Conservation Society; Estados UnidosFil: Mares, Michael A.. Oklahoma State University; Estados UnidosFil: Marsh, Helene. James Cook University; AustraliaFil: Mattioli, Stefano. Università degli Studi di Siena; ItaliaFil: Morton, F. Blake. University of Hull; Reino UnidoFil: Ojeda, Agustina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Ordóñez Garza, Nicté. Instituto Nacional de Biodiversidad; EcuadorFil: Pardiñas, Ulises Francisco J.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Diversidad y Evolución Austral; ArgentinaFil: Pavan, Mariana. Universidade de Sao Paulo; BrasilFil: Riley, Erin P.. San Diego State University; Estados UnidosFil: Rubenstein, Daniel I.. University of Princeton; Estados UnidosFil: Ruelas, Dennisse. Museo de Historia Natural, Lima; PerúFil: Schai-Braun, Stéphanie. Universitat Fur Bodenkultur Wien; AustriaFil: Schank, Cody J.. University of Texas at Austin; Estados UnidosFil: Shenbrot, Georgy. Ben Gurion University of the Negev; IsraelFil: Solari, Sergio. Universidad de Antioquia; ColombiaFil: Superina, Mariella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Tsang, Susan. American Museum of Natural History; Estados UnidosFil: Van Cakenberghe, Victor. Universiteit Antwerp; BélgicaFil: Veron, Geraldine. Université Pierre et Marie Curie; FranciaFil: Wallis, Janette. Kasokwa-kityedo Forest Project; UgandaFil: Whittaker, Danielle. Michigan State University; Estados UnidosFil: Wells, Rod. Flinders University.; AustraliaFil: Wittemyer, George. State University of Colorado - Fort Collins; Estados UnidosFil: Woinarski, John. Charles Darwin University; AustraliaFil: Upham, Nathan S.. University of Yale; Estados UnidosFil: Jetz, Walter. University of Yale; Estados Unido

    The Cysteine Rich Necrotrophic Effector SnTox1 Produced by Stagonospora nodorum Triggers Susceptibility of Wheat Lines Harboring Snn1

    Get PDF
    The wheat pathogen Stagonospora nodorum produces multiple necrotrophic effectors (also called host-selective toxins) that promote disease by interacting with corresponding host sensitivity gene products. SnTox1 was the first necrotrophic effector identified in S. nodorum, and was shown to induce necrosis on wheat lines carrying Snn1. Here, we report the molecular cloning and validation of SnTox1 as well as the preliminary characterization of the mechanism underlying the SnTox1-Snn1 interaction which leads to susceptibility. SnTox1 was identified using bioinformatics tools and verified by heterologous expression in Pichia pastoris. SnTox1 encodes a 117 amino acid protein with the first 17 amino acids predicted as a signal peptide, and strikingly, the mature protein contains 16 cysteine residues, a common feature for some avirulence effectors. The transformation of SnTox1 into an avirulent S. nodorum isolate was sufficient to make the strain pathogenic. Additionally, the deletion of SnTox1 in virulent isolates rendered the SnTox1 mutated strains avirulent on the Snn1 differential wheat line. SnTox1 was present in 85% of a global collection of S. nodorum isolates. We identified a total of 11 protein isoforms and found evidence for strong diversifying selection operating on SnTox1. The SnTox1-Snn1 interaction results in an oxidative burst, DNA laddering, and pathogenesis related (PR) gene expression, all hallmarks of a defense response. In the absence of light, the development of SnTox1-induced necrosis and disease symptoms were completely blocked. By comparing the infection processes of a GFP-tagged avirulent isolate and the same isolate transformed with SnTox1, we conclude that SnTox1 may play a critical role during fungal penetration. This research further demonstrates that necrotrophic fungal pathogens utilize small effector proteins to exploit plant resistance pathways for their colonization, which provides important insights into the molecular basis of the wheat-S. nodorum interaction, an emerging model for necrotrophic pathosystems
    corecore