9,343 research outputs found
Breast feeding practices and views among diabetic women: a retrospective cohort study
Objective:
to explore the pattern and experiences of breast-feeding practices among diabetic women.
Design:
retrospective cohort study using maternal records and postal questionnaires in a Baby-Friendly hospital.
Participants:
diabetic mothers including women with gestational diabetes, and type 1 and 2 diabetes mellitus.
Findings:
from the total group of respondents, 81.9% intended to breast feed. The actual breast feeding rates were 81.9% at birth, 68.1% at 2 weeks and 28.7% at 6 months postpartum. Major themes that were identified from women's experiences included information and advice, support vs. pressure, classification and labelling, and expectations.
Conclusions:
more than two-thirds of the diabetic women intended to breast feed and actually did breast feed in this study. For both the total study population and the type 1 and 2 diabetics alone, more than half were still breast feeding at 2 weeks postpartum, and approximately one-third were still breast feeding at 6 months postpartum.
Implications for practice:
structured support, provided for women through Baby-Friendly initiatives, was appreciated by the diabetic women in this study. The extent to which this support influenced the highly successful breast feeding practices in this group of women needs focused investigation. The need for a delicate balancing act between pressure and advice in order to prevent coercion was noted.</p
The joint large-scale foreground-CMB posteriors of the 3-year WMAP data
Using a Gibbs sampling algorithm for joint CMB estimation and component
separation, we compute the large-scale CMB and foreground posteriors of the
3-yr WMAP temperature data. Our parametric data model includes the cosmological
CMB signal and instrumental noise, a single power law foreground component with
free amplitude and spectral index for each pixel, a thermal dust template with
a single free overall amplitude, and free monopoles and dipoles at each
frequency. This simple model yields a surprisingly good fit to the data over
the full frequency range from 23 to 94 GHz. We obtain a new estimate of the CMB
sky signal and power spectrum, and a new foreground model, including a
measurement of the effective spectral index over the high-latitude sky. A
particularly significant result is the detection of a common spurious offset in
all frequency bands of ~ -13muK, as well as a dipole in the V-band data.
Correcting for these is essential when determining the effective spectral index
of the foregrounds. We find that our new foreground model is in good agreement
with template-based model presented by the WMAP team, but not with their MEM
reconstruction. We believe the latter may be at least partially compromised by
the residual offsets and dipoles in the data. Fortunately, the CMB power
spectrum is not significantly affected by these issues, as our new spectrum is
in excellent agreement with that published by the WMAP team. The corresponding
cosmological parameters are also virtually unchanged.Comment: 5 pages, 4 figures, submitted to ApJL. Background data are available
at http://www.astro.uio.no/~hke under the Research ta
Recommended from our members
Using Implicit Instructional Cues to Influence False Memory Induction
Previous research has shown that explicit cues specific to the encoding process (endogenous) or characteristic of the stimuli themselves (exogenous) can be used to direct a reader’s attentional resources towards either relational or item-specific information. By directing attention to relational information (and therefore away from item-specific information) the rate of false memory induction can be increased. The purpose of the current study was to investigate if a similar effect would be found by manipulating implicitly endogenous cues. An instructional manipulation was used to influence the perceptual action participants performed on word stimuli during the encoding of DRM list words. Results demonstrated that the instructional conditions that encouraged faster processing also led to an increased rate of false memory induction for semantically related words, supporting the hypothesis that attention was directed towards relational information. This finding supports the impoverished relational processing account of false memory induction. This supports the idea that implicitly endogenous cues, exogenous cues (like font) or explicitly endogenous cues (like training) can direct attentional resources during encoding
Joint Bayesian component separation and CMB power spectrum estimation
We describe and implement an exact, flexible, and computationally efficient
algorithm for joint component separation and CMB power spectrum estimation,
building on a Gibbs sampling framework. Two essential new features are 1)
conditional sampling of foreground spectral parameters, and 2) joint sampling
of all amplitude-type degrees of freedom (e.g., CMB, foreground pixel
amplitudes, and global template amplitudes) given spectral parameters. Given a
parametric model of the foreground signals, we estimate efficiently and
accurately the exact joint foreground-CMB posterior distribution, and therefore
all marginal distributions such as the CMB power spectrum or foreground
spectral index posteriors. The main limitation of the current implementation is
the requirement of identical beam responses at all frequencies, which restricts
the analysis to the lowest resolution of a given experiment. We outline a
future generalization to multi-resolution observations. To verify the method,
we analyse simple models and compare the results to analytical predictions. We
then analyze a realistic simulation with properties similar to the 3-yr WMAP
data, downgraded to a common resolution of 3 degree FWHM. The results from the
actual 3-yr WMAP temperature analysis are presented in a companion Letter.Comment: 23 pages, 16 figures; version accepted for publication in ApJ -- only
minor changes, all clarifications. More information about the WMAP3 analysis
available at http://www.astro.uio.no/~hke under the Research ta
Theoretical analysis of perching and hovering maneuvers
Unsteady aerodynamic phenomena are encountered in a large number of modern aerospace and non-aerospace applications. Leading edge vortices (LEVs) are of particular interest because of their large impact on the forces and performance. In rotorcraft applications, they cause large vibrations and torsional loads (dynamic stall), affecting the performance adversely. In insect
flight however, they contribute positively by enabling high-lift flight. Identifying the conditions that result in LEV formation and modeling their effects on the flow is an important ongoing challenge. Perching (airfoil decelerates to rest) and hovering (zero freestream velocity) maneuvers are of special interest. In earlier work by the authors, a Leading Edge Suction Parameter (LESP) was developed to predict LEV formation for airfoils undergoing arbitrary variation in pitch and plunge at a constant freestream velocity. In this research, the LESP criterion is extended to situations where the freestream velocity is varying or zero. A point-vortex model based on this criterion is developed and results from the model are compared against those from a computational fluid dynamics (CFD) method. Abstractions of perching and hovering maneuvers are used to validate the low-order model's performance in highly unsteady vortex-dominated flows, where the time-varying freestream/translational velocity is small in magnitude compared to the other contributions to the velocity experienced by the leading edge region of the airfoil. Time instants of LEV formation, flow topologies and force coefficient histories for the various motion kinematics from the low-order model and CFD are obtained and compared. The LESP criterion is seen to be successful in predicting the start of LEV formation and the point-vortex method is effective in modeling the flow development and forces on the airfoil. Typical run-times for the low-order method are between 30-40 seconds, making it a potentially convenient tool for control/design applications
Tests of star formation metrics in the low metallicity galaxy NGC 5253 using ALMA observations of H30 line emission
We use Atacama Large Millimeter/submillimeter Array (ALMA) observations of
H30 (231.90 GHz) emission from the low metallicity dwarf galaxy NGC
5253 to measure the star formation rate (SFR) within the galaxy and to test the
reliability of SFRs derived from other commonly-used metrics. The H30
emission, which originates mainly from the central starburst, yields a
photoionizing photon production rate of (1.90.3)10 s
and an SFR of 0.0870.013 M yr based on conversions that
account for the low metallicity of the galaxy and for stellar rotation. Among
the other star formation metrics we examined, the SFR calculated from the total
infrared flux was statistically equivalent to the values from the H30
data. The SFR based on previously-published versions of the H flux that
were extinction corrected using Pa and Pa lines were lower than
but also statistically similar to the H30 value. The mid-infrared (22
m) flux density and the composite star formation tracer based on H
and mid-infrared emission give SFRs that were significantly higher because the
dust emission appears unusually hot compared to typical spiral galaxies.
Conversely, the 70 and 160 m flux densities yielded SFR lower than the
H30 value, although the SFRs from the 70 m and H30 data
were within 1-2 of each other. While further analysis on a broader
range of galaxies are needed, these results are instructive of the best and
worst methods to use when measuring SFR in low metallicity dwarf galaxies like
NGC 5253.Comment: 14 pages, 5 figures, accepted for publication in MNRA
Clinicopathological characteristics of histiocytic sarcoma affecting the central nervous system in dogs.
BackgroundHistiocytic sarcoma affecting the central nervous system (CNS HS) in dogs may present as primary or disseminated disease, often characterized by inflammation. Prognosis is poor, and imaging differentiation from other CNS tumors can be problematic.ObjectiveTo characterize the clinicopathological inflammatory features, breed predisposition, and survival in dogs with CNS HS.AnimalsOne hundred two dogs with HS, 62 dogs with meningioma.MethodsRetrospective case series. Records were reviewed for results of cerebrospinal fluid (CSF) analysis, CBC, treatment, and outcome data.ResultsPredisposition for CNS HS was seen in Bernese Mountain Dogs, Golden Retrievers, Rottweilers, Corgis, and Shetland Sheepdogs (P ≤ .001). Corgis and Shetland Sheepdogs had predominantly primary tumors; Rottweilers had exclusively disseminated tumors. Marked CSF inflammation was characteristic of primary rather than disseminated HS, and neoplastic cells were detected in CSF of 52% of affected dogs. Increased neutrophil to lymphocyte ratios were seen in all groups relative to controls (P <.008) but not among tumor subtypes. Definitive versus palliative treatment resulted in improved survival times (P < .001), but overall prognosis was poor.Conclusions and clinical importanceClinicopathological differences between primary and disseminated HS suggest that tumor biological behavior and origin may be different. Corgis and Shetland Sheepdogs are predisposed to primary CNS HS, characterized by inflammatory CSF. High total nucleated cell count and the presence of neoplastic cells support the use of CSF analysis as a valuable diagnostic test. Prognosis for CNS HS is poor, but further evaluation of inflammatory mechanisms may provide novel therapeutic opportunities
Dispersity-Driven Melting Transition in Two Dimensional Solids
We perform extensive simulations of Lennard-Jones particles to study
the effect of particle size dispersity on the thermodynamic stability of
two-dimensional solids. We find a novel phase diagram in the dispersity-density
parameter space. We observe that for large values of the density there is a
threshold value of the size dispersity above which the solid melts to a liquid
along a line of first order phase transitions. For smaller values of density,
our results are consistent with the presence of an intermediate hexatic phase.
Further, these findings support the possibility of a multicritical point in the
dispersity-density parameter space.Comment: In revtex format, 4 pages, 6 postscript figures. Submitted to PR
- …