96 research outputs found

    Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Get PDF
    Despite the acknowledged relevance of aerosol-derived water-soluble organic carbon (WSOC) to climate and biogeochemical cycling, characterization of aerosol WSOC has been limited. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was utilized in this study to provide detailed molecular level characterization of the high molecular weight (HMW; m/z>223) component of aerosol-derived WSOC collected from rural sites in Virginia and New York, USA. More than 3000 peaks were detected by ESI FT-ICR MS within a m/z range of 223–600 for each sample. Approximately 86% (Virginia) and 78% (New York) of these peaks were assigned molecular formulas using only carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) as elemental constituents. H/C and O/C molar ratios were plotted on van Krevelen diagrams and indicated a strong contribution of lignin-like and lipid-like compounds to the aerosol-derived WSOC samples. Approximately 1–4% of the peaks in the aerosol-derived WSOC mass spectra were classified as black carbon (BC) on the basis of double bond equivalents calculated from the assigned molecular formulas. In addition, several high-magnitude peaks in the mass spectra of samples from both sites corresponded to molecular formulas proposed in previous secondary organic aerosol (SOA) laboratory investigations indicating that SOAs are important constituents of the WSOC. Overall, ESI FT-ICR MS provides a level of resolution adequate for detailed compositional and source information of the HMW constituents of aerosol-derived WSOC

    Time Trends of Polybrominated Diphenyl Ethers (PBDEs) in Antarctic Biota

    Get PDF
    Polybrominated diphenyl ethers (PBDEs) are emerged contaminants that were produced and used as flame retardants in numerous consumer and industrial applications for decades until banned. They remain ubiquitously present in the environment today. Here, a unique set of \u3e200 biotic samples from the Antarctic was analyzed for PBDEs, including phytoplankton, krill, fish, and fur seal milk, spanning several sampling seasons over 14 years. PBDE-47 and -99 were the dominant congeners determined in all samples, constituting \u3e 60% of total PBDEs. A temporal trend was observed for Sigma 7PBDE concentrations in fur seal milk, where concentrations significantly increased (R-2 = 0.57, p \u3c 0.05) over time (2000-2014). Results for krill and phytoplankton also suggested increasing PBDE concentrations over time. Trends of PBDEs in fur seal milk of individual seals sampled 1 or more years apart showed no clear temporal trends. Overall, there was no indication of PBDEs decreasing in Antarctic biota yet, whereas numerous studies have reported decreasing trends in the northern hemisphere. Similar PBDE concentrations in perinatal versus nonperinatal milk implied the importance of local PBDE sources for bioaccumulation. These results indicate the need for continued assessment of contaminant trends, such as PBDEs, and their replacements, in Antarctica

    Reduced Reactivation from Dormancy but Maintained Lineage Choice of Human Mesenchymal Stem Cells with Donor Age

    Get PDF
    Mesenchymal stem cells (MSC) are promising for cell-based regeneration therapies but up to date it is still controversial whether their function is maintained throughout ageing. Aim of this study was to address whether frequency, activation in vitro, replicative function, and in vitro lineage choice of MSC is maintained throughout ageing to answer the question whether MSC-based regeneration strategies should be restricted to younger individuals. MSC from bone marrow aspirates of 28 donors (5–80 years) were characterized regarding colony-forming unit-fibroblast (CFU-F) numbers, single cell cloning efficiency (SSCE), osteogenic, adipogenic and chondrogenic differentiation capacity in vitro. Alkaline phosphatase (ALP) activity, mineralization, Oil Red O content, proteoglycan- and collagen type II deposition were quantified. While CFU-F frequency was maintained, SSCE and early proliferation rate decreased significantly with advanced donor age. MSC with higher proliferation rate before start of induction showed stronger osteogenic, adipogenic and chondrogenic differentiation. MSC with high osteogenic capacity underwent better chondrogenesis and showed a trend to better adipogenesis. Lineage choice was, however, unaltered with age. Conclusion: Ageing influenced activation from dormancy and replicative function of MSC in a way that it may be more demanding to mobilize MSC to fast cell growth at advanced age. Since fast proliferation came along with high multilineage capacity, the proliferation status of expanded MSC rather than donor age may provide an argument to restrict MSC-based therapies to certain individuals

    Comparative Influence of Ocean Conditions on Yellowfin and Atlantic Bluefin Tuna Catch from Longlines in the Gulf of Mexico

    Get PDF
    Directed fishing effort for Atlantic bluefin tuna in the Gulf of Mexico (GOM), their primary spawning grounds in the western Atlantic, has been prohibited since the 1980s due to a precipitous decline of the spawning stock biomass. However, pelagic longlines targeted at other species, primarily yellowfin tuna and swordfish, continue to catch Atlantic bluefin tuna in the GOM as bycatch. Spatial and temporal management measures minimizing bluefin tuna bycatch in the GOM will likely become important in rebuilding the western Atlantic bluefin stock. In order to help inform management policy and understand the relative distribution of target and bycatch species in the GOM, we compared the spatiotemporal variability and environmental influences on the catch per unit effort (CPUE) of yellowfin (target) and bluefin tuna (bycatch). Catch and effort data from pelagic longline fisheries observers (1993–2005) and scientific tagging cruises (1998–2002) were coupled with environmental and biological data. Negative binomial models were used to fit the data for both species and Akaike's Information Criterion (corrected for small sample size) was used to determine the best model. Our results indicate that bluefin CPUE had higher spatiotemporal variability as compared to yellowfin CPUE. Bluefin CPUE increased substantially during the breeding months (March-June) and peaked in April and May, while yellowfin CPUE remained relatively high throughout the year. In addition, bluefin CPUE was significantly higher in areas with negative sea surface height anomalies and cooler sea surface temperatures, which are characteristic of mesoscale cyclonic eddies. In contrast, yellowfin CPUE was less sensitive to environmental variability. These differences in seasonal variability and sensitivity to environmental influences suggest that bluefin tuna bycatch in the GOM can be reduced substantially by managing the spatial and temporal distribution of the pelagic longline effort without substantially impacting yellowfin tuna catches

    Origins of the Tumor Microenvironment: Quantitative Assessment of Adipose-Derived and Bone Marrow–Derived Stroma

    Get PDF
    To meet the requirements for rapid tumor growth, a complex array of non-neoplastic cells are recruited to the tumor microenvironment. These cells facilitate tumor development by providing matrices, cytokines, growth factors, as well as vascular networks for nutrient and waste exchange, however their precise origins remain unclear. Through multicolored tissue transplant procedures; we have quantitatively determined the contribution of bone marrow-derived and adipose-derived cells to stromal populations within syngeneic ovarian and breast murine tumors. Our results indicate that subpopulations of tumor-associated fibroblasts (TAFs) are recruited from two distinct sources. The majority of fibroblast specific protein (FSP) positive and fibroblast activation protein (FAP) positive TAFs originate from mesenchymal stem/stromal cells (MSC) located in bone marrow sources, whereas most vascular and fibrovascular stroma (pericytes, α-SMA+ myofibroblasts, and endothelial cells) originates from neighboring adipose tissue. These results highlight the capacity for tumors to utilize multiple sources of structural cells in a systematic and discriminative manner

    Dispersal Routes and Habitat Utilization of Juvenile Atlantic Bluefin Tuna, Thunnus thynnus, Tracked with Mini PSAT and Archival Tags

    Get PDF
    Between 2005 and 2009, we deployed 58 miniature pop-up satellite archival tags (PSAT) and 132 implanted archival tags on juvenile Atlantic bluefin tuna (age 2–5) in the northwest Atlantic Ocean. Data returned from these efforts (n = 26 PSATs, 1 archival tag) revealed their dispersal routes, horizontal and vertical movements and habitat utilization. All of the tagged bluefin tuna remained in the northwest Atlantic for the duration observed, and in summer months exhibited core-use of coastal seas extending from Maryland to Cape Cod, MA, (USA) out to the shelf break. Their winter distributions were more spatially disaggregated, ranging south to the South Atlantic Bight, northern Bahamas and Gulf Stream. Vertical habitat patterns showed that juvenile bluefin tuna mainly occupied shallow depths (mean  = 5–12 m, sd  = 15–23.7 m) and relatively warm water masses in summer (mean  = 17.9–20.9°C, sd  = 4.2–2.6°C) and had deeper and more variable depth patterns in winter (mean  = 41–58 m, sd  = 48.9–62.2 m). Our tagging results reveal annual dispersal patterns, behavior and oceanographic associations of juvenile Atlantic bluefin tuna that were only surmised in earlier studies. Fishery independent profiling from electronic tagging also provide spatially and temporally explicit information for evaluating dispersals rates, population structure and fisheries catch patterns

    Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos

    Get PDF
    Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint

    An integrated study of the chemical composition of Antarctic aerosol to investigate natural and anthropogenic sources

    Get PDF
    During the 2010-11 austral summer, an aerosol sampling campaign was carried out at a coastal Antarctic site (Terra Nova Bay, Victoria Land). In this work, previously published data about water-soluble organic compounds and major and trace elements were merged with novel measurements of major ions, carboxylic acids and persistent organic pollutants (polychlorobiphenyls, polycyclic aromatic hydrocarbons, polychlorinated naphthalenes, polybrominated diphenylethers and organochlorine pesticides) in order to provide a chemical characterisation of Antarctic aerosol and to investigate its sources. The persistent organic pollutants were determined using a high-volume sampler, able to collect both particulate and gaseous fractions, whereas remaining compounds were determined by performing an aerosol size fractionation with a PM10 cascade impactor. Ionic species represented 58% (350 ng m(-3)) of the sum of concentrations of all detected compounds (596 ng m(-3)) in our Antarctic PM10 aerosol samples due to natural emission. Trace concentrations of persistent organic pollutants highlighted that the occurrence of these species can be due to long-range atmospheric transport or due to the research base. Factor analysis was applied to the dataset obtained from the samples collected with the PM10 sampler in order to make a distinction between anthropogenic, crustal and biogenic sources using specific chemical markers
    • …
    corecore