2,803 research outputs found
Auslegung: A journal of philosophy, volume 27, number 2 (summer/fall, 2004) book review
Review of A. B. Dickerson's "Kant on Representation and Objectivity.
On Embeddability of Buses in Point Sets
Set membership of points in the plane can be visualized by connecting
corresponding points via graphical features, like paths, trees, polygons,
ellipses. In this paper we study the \emph{bus embeddability problem} (BEP):
given a set of colored points we ask whether there exists a planar realization
with one horizontal straight-line segment per color, called bus, such that all
points with the same color are connected with vertical line segments to their
bus. We present an ILP and an FPT algorithm for the general problem. For
restricted versions of this problem, such as when the relative order of buses
is predefined, or when a bus must be placed above all its points, we provide
efficient algorithms. We show that another restricted version of the problem
can be solved using 2-stack pushall sorting. On the negative side we prove the
NP-completeness of a special case of BEP.Comment: 19 pages, 9 figures, conference version at GD 201
Vulnerability analysis of satellite-based synchronized smart grids monitoring systems
The large-scale deployment of wide-area monitoring systems could play a strategic role in supporting the evolution of traditional power systems toward smarter and self-healing grids. The correct operation of these synchronized monitoring systems requires a common and accurate timing reference usually provided by a satellite-based global positioning system. Although these satellites signals provide timing accuracy that easily exceeds the needs of the power industry, they are extremely vulnerable to radio frequency interference. Consequently, a comprehensive analysis aimed at identifying their potential vulnerabilities is of paramount importance for correct and safe wide-area monitoring system operation. Armed with such a vision, this article presents and discusses the results of an experimental analysis aimed at characterizing the vulnerability of global positioning system based wide-area monitoring systems to external interferences. The article outlines the potential strategies that could be adopted to protect global positioning system receivers from external cyber-attacks and proposes decentralized defense strategies based on self-organizing sensor networks aimed at assuring correct time synchronization in the presence of external attacks
Differences in estimates of size distribution of beryllium powder materials using phase contrast microscopy, scanning electron microscopy, and liquid suspension counter techniques
Accurate characterization of the physicochemical properties of aerosols generated for inhalation toxicology studies is essential for obtaining meaningful results. Great emphasis must also be placed on characterizing particle properties of materials as administered in inhalation studies. Thus, research is needed to identify a suite of techniques capable of characterizing the multiple particle properties (i.e., size, mass, surface area, number) of a material that may influence toxicity. The purpose of this study was to characterize the morphology and investigate the size distribution of a model toxicant, beryllium. Beryllium metal, oxides, and alloy particles were aerodynamically size-separated using an aerosol cyclone, imaged dry using scanning electron microscopy (SEM), then characterized using phase contrast microscopy (PCM), a liquid suspension particle counter (LPC), and computer-controlled SEM (CCSEM). Beryllium metal powder was compact with smaller sub-micrometer size particles attached to the surface of larger particles, whereas the beryllium oxides and alloy particles were clusters of primary particles. As expected, the geometric mean (GM) diameter of metal powder determined using PCM decreased with aerodynamic size, but when suspended in liquid for LPC or CCSEM analysis, the GM diameter decreased by a factor of two (p < 0.001). This observation suggested that the smaller submicrometer size particles attached to the surface of larger particles and/or particle agglomerates detach in liquid, thereby shifting the particle size distribution downward. The GM diameters of the oxide materials were similar regardless of sizing technique, but observed differences were generally significant (p < 0.001). For oxides, aerodynamic cluster size will dictate deposition in the lung, but primary particle size may influence biological activity. The GM diameter of alloy particles determined using PCM became smaller with decreasing aerodynamic size fraction; however, when suspended in liquid for CCSEM and LPC analyses, GM particle size decreased by a factor of two (p < 0.001) suggesting that alloy particles detach in liquid. Detachment of particles in liquid could have significance for the expected versus actual size (and number) distribution of aerosol delivered to an exposure subject. Thus, a suite of complimentary analytical techniques may be necessary for estimating size distribution. Consideration should be given to thoroughly understanding the influence of any liquid vehicle which may alter the expected aerosol size distribution
Plantmetabolomics.org: mass spectrometry-based Arabidopsis metabolomics—database and tools update
The PlantMetabolomics (PM) database (http://www.plantmetabolomics.org) contains comprehensive targeted and untargeted mass spectrum metabolomics data for Arabidopsis mutants across a variety of metabolomics platforms. The database allows users to generate hypotheses about the changes in metabolism for mutants with genes of unknown function. Version 2.0 of PlantMetabolomics.org currently contains data for 140 mutant lines along with the morphological data. A web-based data analysis wizard allows researchers to select preprocessing and data-mining procedures to discover differences between mutants. This community resource enables researchers to formulate models of the metabolic network of Arabidopsis and enhances the research community's ability to formulate testable hypotheses concerning gene functions. PM features new web-based tools for data-mining analysis, visualization tools and enhanced cross links to other databases. The database is publicly available. PM aims to provide a hypothesis building platform for the researchers interested in any of the mutant lines or metabolites
Electric-Field Tuning of Spin-Dependent Exciton-Exciton Interactions in Coupled Quantum Wells
We have shown experimentally that an electric field decreases the energy
separation between the two components of a dense spin-polarized exciton gas in
a coupled double quantum well, from a maximum splitting of meV to
zero, at a field of 35 kV/cm. This decrease, due to the field-induced
deformation of the exciton wavefunction, is explained by an existing
calculation of the change in the spin-dependent exciton-exciton interaction
with the electron-hole separation. However, a new theory that considers the
modification of screening with that separation is needed to account for the
observed dependence on excitation power of the individual energies of the two
exciton components.Comment: 5 pages, 4 eps figures, RevTeX, Physical Review Letters (in press
Power-Based Droop Control in DC Microgrids Enabling Seamless Disconnection From Upstream Grids
This paper proposes a local power-based droop controller for distributed energy resource converters in dc microgrids that are connected to upstream grids by grid-interface converters. During normal operation, the grid-interface converter imposes the microgrid bus voltage, and the proposed controller allows power flow regulation at distributed energy resource converters\u2019 output. On the other hand, during abnormal operation of the grid-interface converter (e.g., due to faults in the upstream grid), the proposed controller allows bus voltage regulation by droop control. Notably, the controller can autonomously convert from power flow control to droop control, without any need of bus voltage variation detection schemes or communication with other microgrid components, which enables seamless transitions between these two modes of operation. Considering distributed energy resource converters employing the power-based droop control, the operation modes of a single converter and of the whole microgrid are defined and investigated herein. The controller design is also introduced. Furthermore, the power sharing performance of this control approach is analyzed and compared with that of classical droop control. The experimental results from a laboratory-scale dc microgrid prototype are reported to show the final performances of the proposed power-based droop control
Mach's Principle and the Origin of Inertia
The current status of Mach's principle is discussed within the context of
general relativity. The inertial properties of a particle are determined by its
mass and spin, since these characterize the irreducible unitary representations
of the inhomogeneous Lorentz group. The origin of the inertia of mass and
intrinsic spin are discussed and the inertia of intrinsic spin is studied via
the coupling of intrinsic spin with rotation. The implications of spin-rotation
coupling and the possibility of history dependence and nonlocality in
relativistic physics are briefly mentioned.Comment: 14 pages. Dedicated to Carl Brans in honor of his 80th birthday. To
appear in the Brans Festschrift; v2: typo corrected, published in: At the
Frontier of Spacetime, edited by T. Asselmeyer-Maluga (Springer, 2016),
Chapter 10, pp. 177-18
Recommended from our members
Studies for the Preparation of Zirconium-Clad Uranium-10 W/O Molybdenum Fuel Pins
Production methods for producting homogeneous uranium-10 wt.% molybdenum fuel-alloy pin with a uniform zirconium cladding have been studied. The effect of various impurities has been investigated and the nature of and methods for ellminating cracking in swaged fuel pins have been examined. A major portion of the results is based on the study of material produced from 25-lb ingot castings. Small expertmental-scale ingots were also employed in impurity, heat-treatment, and cracking studies. On the basis of the data obtained recommendattons concerning casting, fabrication, and heat-treatment techniques necessary to produce a fuel pin of satisfactory integrity are presented. Specifications as to allowable carbon, chromium, iron, nickel, oxygen, and zirconium content are recommended. (auth
- …