802 research outputs found

    The Atlantis Bank Gabbro Massif, Southwest Indian Ridge

    Get PDF
    This paper presents the first detailed geologic map of in situ lower ocean crust; the product of six surveys of Atlantis Bank on the SW Indian Ridge. This combined with major and trace element compositions of primary magmatic phases in 99 seafloor gabbros shows there are both significant vertical and ridge-parallel variations in crustal composition and thickness, but a continuity of the basic stratigraphy parallel to spreading. This stratigraphy is not that of magmatic sedimentation in a large crustal magma chamber. Instead, it is the product of dynamic accretion where the lower crust formed by episodic intrusion, large-scale upward migration of interstitial melt due to crystal mush compaction, and continuous tectonic extension accompanied by hyper- and sub-solidus, crystal-plastic deformation. Five crossings of the gabbro-peridotite contact along the transform wall show that massive mantle peridotite is intruded by cumulate residues of moderately to highly evolved magmas, few of which could be even close to equilibrium with a primary mantle magma. This contact then does not represent the crust-mantle boundary as envisaged in the ophiolite analog for ocean crust. The residues of the magmas parental to the shallow crust must also lie beneath the center of the complex. This, and the nearly complete absence of dunites in peridotites from the transform wall, shows that melt transport through the shallow lithosphere was largely restricted to the central region of the paleo-ridge segment. There is almost no evidence for a melt lens or high-level storage of primitive melt in the upper 1500 m of Atlantis Bank. Thus, the composition of associated mid-ocean ridge basalt appears largely controlled by fractional crystallization of primitive cumulates at depth, near or at the base of the crust, modified somewhat by melt-rock reaction during transport through the overlying cumulate pile to the seafloor. Inliers of the dike-gabbro transition show that the uppermost gabbros crystallized at depth and were then emplaced upward, as they cooled, into the zone of diking. ODP and IODP drilling along the center of the gabbro massif also found few primitive gabbros that could have been in equilibrium with the original overlying lavas. Evidence of large-scale upward, permeable transport of interstitial melt through the gabbros is ubiquitous. Thus, post-cumulus processes, including extensive reaction, dissolution, and re-precipitation within the cumulate pile have obscured nearly all evidence of earlier primitive origins. We suggest that many of the gabbros may have started as primitive cumulates but were hybridized and transformed by later, migrating melts to evolved compositions, even as they ascended to higher levels, while new primitive cumulates were emplaced near the base of the crust. Mass balance for a likely parental melt intruded from the mantle to form the crust, however, requires that such primitive cumulates must exist at depth beneath Atlantis Bank at the center of the magmatic complex. The Atlantis Bank Gabbro Massif accreted by direct magma intrusion into the lower crust, followed by upward diapiric flow, first as a crystal mush, then by solid-state, crystal-plastic deformation, and finally by detachment faulting to the sea floor. The strongly asymmetric spreading to the south, parallel to the transform, was due to fault capture, with the bounding faults on the northern rift valley wall cut off by the detachment fault, which extended across the zone of intrusion causing rapid migration of the plate boundary to the north

    Resonances in rotationally inelastic scattering of OH(X2ΠX^2\Pi) with helium and neon

    Get PDF
    We present detailed calculations on resonances in rotationally and spin-orbit inelastic scattering of OH (X\,^2\Pi, j=3/2, F_1, f) radicals with He and Ne atoms. We calculate new \emph{ab initio} potential energy surfaces for OH-He, and the cross sections derived from these surfaces compare favorably with the recent crossed beam scattering experiment of Kirste \emph{et al.} [Phys. Rev. A \textbf{82}, 042717 (2010)]. We identify both shape and Feshbach resonances in the integral and differential state-to-state scattering cross sections, and we discuss the prospects for experimentally observing scattering resonances using Stark decelerated beams of OH radicals.Comment: 14 pages, 15 Figure

    Critical role of metals in biochemical properties of xylose isomerase

    Get PDF
    Improving the activity of xylose isomerase (XI) is highly desired for achieving efficient fermentation of xylose in lignocellulosic biomass using XI-expressing S. cerevisiae. XI is a metalloenzyme which requires two bivalent metals for its catalytic activity. The enzyme from Piromyces sp. E2 (PirXI)[1],[2] is activated with various metal ions including Mg2+, Mn2+, Ca2+, Co2+, Zn2+ and Fe2+. The biochemical properties of PirXI are dependent on the types of its metal cofactors. Moreover, the enzyme shows different affinities towards these metals. Characterization of these properties is critical for understanding the enzyme behavior in vivo and to further adapt the enzyme to the cytosolic metal environment. Recently, we have shown that altered intracellular metal composition can improve anaerobic growth of a xylose-fermenting strain by enhancing the activity of PirXI[3]. Furthermore, our current study on PirXI and other studies on different XIs have shown that it is also possible to change the metal preferences of the enzyme[4]. A PirXI variant with a single amino acid substitution in the proximity of the metal binding residues showed significant changes in metal preference compared to the wild-type PirXI. Further exploration on metal specificity of PirXI is necessary to optimize the in vivo enzyme activity. References: 1.Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT, FEMS Yeast Research 4 (2003) 69-78 2.van Maris AJ, Winkler AA, Kuyper M, de Laat WT, van Dijken JP, Pronk JT, Adv Biochem Engin/Biotechnol (2007) 108: 179–204 3.Verhoeven MD, Lee M, Kamoen L, van den Broek M, Janssen DB, Daran JG, van Maris AJA, Pronk JT, Sci. Rep (2017) 7, 46155 4.van Tilbeurgh H, Jenkins J, Chiadmi M, Janin J, Wodak SJ, Mrabet NT, Lambeir AM, Biochemistry (1992) 31: 5467-547

    Urinary Albumin Excretion and Its Relation With C-Reactive Protein and the Metabolic Syndrome in the Prediction of Type 2 Diabetes

    Get PDF
    OBJECTIVE—To investigate urinary albumin excretion (UAE) and its relation with C-reactive protein (CRP) and the metabolic syndrome in the prediction of the development of type 2 diabetes. RESEARCH DESIGN AND METHODS—We used data from the Prevention of Renal and Vascular End Stage Disease (PREVEND) study, an ongoing, community-based, prospective cohort study initiated in 1997 in the Netherlands. The initial cohort consisted of 8,592 subjects. After 4 years, 6,894 subjects participated in a follow-up survey. Subjects with diabetes at baseline or missing data on fasting glucose were excluded, leaving 5,654 subjects for analysis. The development of type 2 diabetes, defined as a fasting glucose ≥7.0 mmol/l and/or the use of antidiabetic medication, was used as the outcome measure. UAE was calculated as the mean UAE from two consecutive 24-h urine collections. Logistic regression models were used, with the development of type 2 diabetes as the dependent variable. RESULTS—Of the 5,654 subjects for whom data were analyzed, 185 (3.3%) developed type 2 diabetes during a mean follow-up period of 4.2 years. UAE, CRP, and the presence of the metabolic syndrome at baseline were significantly associated with the incidence of type 2 diabetes (P < 0.001 for all variables). In a univariate model, the odds ratio (OR) for UAE was 1.59 (95% CI 1.42–1.79). In our full model, adjusted for age, sex, number of criteria of metabolic syndrome, and other known risk factors for the development of type 2 diabetes (including fasting insulin), the association between UAE and type 2 diabetes remained significant (OR 1.53, 95% CI 1.25–1.88, P < 0.001). There was a significant interaction between UAE and CRP (P = 0.002). After CRP was stratified into tertiles, the ORs for the association between baseline UAE and the development of type 2 diabetes were 2.2 (1.47–3.3), 1.33 (0.96–1.84), and 1.04 (0.83–1.31) for the lowest to highest tertiles, respectively. CONCLUSIONS—UAE predicts type 2 diabetes independent of the metabolic syndrome and other known risk markers of development of type 2 diabetes. The predictive value of UAE was modified by the level of CRP

    Reconstructing f(R)f(R) Theory from Ricci Dark Energy

    Full text link
    In this letter, we regard the f(R)f(R) theory as an effective description for the acceleration of the universe and reconstruct the function f(R)f(R) from the Ricci dark energy, which respects holographic principle of quantum gravity. By using different parameter α\alpha in RDE, we show the behaviors of reconstructed f(R)f(R) and find they are much different in the future.Comment: 16 pages, 7 figure

    High Protein Intake Associates with Cardiovascular Events but not with Loss of Renal Function

    Get PDF
    The long-term effects of higher dietary protein intake on cardiovascular and renal outcomes in the general population are not clear. We analyzed data from 8461 individuals who did not have renal disease and participated in two or three subsequent screenings (6.4-yr follow-up) in a prospective, community-based cohort study (Prevention of Renal and Vascular ENd-stage Disease [PREVEND]). We calculated daily protein intake from 24-h urinary urea excretion (Maroni formula) and used Cox proportional hazard models to analyze the associations between protein intake, cardiovascular events, and mortality. We used mixed-effects models to investigate the association between protein intake and change in renal function over time. The mean ± SD daily protein intake was 1.20 ± 0.27 g/kg. Protein intake was significantly associated with cardiovascular events during follow-up. The associations seemed U-shaped; compared with intermediate protein intake, individuals with either higher or lower protein intake had higher event rates. All-cause mortality and noncardiovascular mortality also were significantly associated with protein intake; individuals with low protein intake had the highest event rates. We found no association between baseline protein intake and rate of renal function decline during follow-up. In summary, in the general population, high protein intake does not promote accelerated decline of renal function but does associate with an increased risk for cardiovascular events

    Cost-effective telecom/datacom semiconductor lasers

    Get PDF
    The recent development of semiconductor laser technologies for cost-effective telecom/datacom applications is reviewed in details in this paper. This includes the laser design, laser chip technology, laser packaging technology and other low cost lasers (chip + packaging). Some design and simulation examples in Archcom laser production are described first. A latest trend in the wafer scale testing/characterization/screening technology for low cost semiconductor laser mass production is discussed then. An advanced long wavelength high power single mode surface emitting laser with wafer scale characterization using our unique mask free focused ion beam (FIB) etching technology is also demonstrated. Detailed descriptions on our wide temperature range (-50 °C to +105 °C) G-PON distributed feedback (DFB) semiconductor lasers with high performance and low cost wafer design are included. Cost reduction innovations in laser package with our beam profile improved laser and optical feedback insensitive (OFBI) laser are also addressed

    A retinoblastoma allele that is mutated at its common E2F interaction site inhibits cell proliferation in gene-targeted mice

    Get PDF
    The retinoblastoma protein (pRB) is best known for regulating cell proliferation through E2F transcription factors. In this report, we investigate the properties of a targeted mutation that disrupts pRB interactions with the transactivation domain of E2Fs. Mice that carry this mutation endogenously (Rb1δG) are defective for pRB-dependent repression of E2F target genes. Except for an accelerated entry into S phase in response to serum stimulation, cell cycle regulation in Rb1δG/δG mouse embryonic fibroblasts (MEFs) strongly resembles that of the wild type. In a serum deprivation-induced cell cycle exit, Rb1δG/δG MEFs display a magnitude of E2F target gene derepression similar to that of Rb1-/- cells, even though Rb1δG/δG cells exit the cell cycle normally. Interestingly, cell cycle arrest in Rb1δG/δG MEFs is responsive to p16 expression and gamma irradiation, indicating that alternate mechanisms can be activated in G1 to arrest proliferation. Some Rb1δG/δG mice die neonatally with a muscle degeneration phenotype, while the others live a normal life span with no evidence of spontaneous tumor formation. Most tissues appear histologically normal while being accompanied by derepression of pRB-regulated E2F targets. This suggests that non- E2F-, pRB-dependent pathways may have a more relevant role in proliferative control than previously identified. © 2014, American Society for Microbiology
    • …
    corecore