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We present detailed calculations on resonances in rotationally and spin-orbit inelastic scattering
of OH (X 2�, j = 3/2, F1, f) radicals with He and Ne atoms. We calculate new ab initio poten-
tial energy surfaces for OH-He, and the cross sections derived from these surfaces compare well
with the recent crossed beam scattering experiment of Kirste et al. [Phys. Rev. A 82, 042717
(2010)]. We identify both shape and Feshbach resonances in the integral and differential state-to-
state scattering cross sections, and we discuss the prospects for experimentally observing scattering
resonances using Stark decelerated beams of OH radicals. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3697816]

I. INTRODUCTION

Measurements of state-to-state cross sections provide
important tests of the reliability of computed potential en-
ergy surfaces (PES’s) describing the interaction of atoms and
molecules.1 Cross sections for collision-induced rotational
transitions are sensitive to the anisotropy of the PES. Since
non-bonding interactions are relatively weak, the magnitudes
of the cross sections are mostly sensitive to the repulsive part
of the PES, except at very low collision energies. An alterna-
tive, spectroscopic approach to gaining information on PES’s
is the determination of the energies of the bound levels of van
der Waals complexes of the collision partners.2, 3 The energies
of the bound levels are mainly sensitive to the attractive part
of the PES’s. As we go up higher in the manifold of these
weakly bound levels, the energies of these levels eventually
become higher than the dissociation energy of the complex,
and such levels are quasi-bound. These quasi-bound levels
are often described as resonances and can be thought of as
a distortion of the continuum in the collision energy depen-
dence of state-to-state cross sections.4 In inelastic scattering,
resonances are called shape or orbiting resonances when the
quasi-bound levels involve monomer levels that are the same
as in the initial or final level of the collision-induced tran-
sition, or Feshbach resonances when they involve different
monomer states.1, 4 Due to their sensitivity to the PES, reso-
nances can reveal important information on the PES.5, 6 So far,
however, resonant structures in scattering cross sections have
been experimentally observed only in exceptional cases.7–10

The crossed molecular beam technique has been an
extremely useful tool for the determination of state-to-state
cross sections, both integral and differential, as well as

a)Electronic address: K.B.Gubbels@science.ru.nl.

their dependence upon the collision energy.11 The recently
developed Stark deceleration technique, taking advantage of
the interaction of polar molecules with time-varying electric
fields, has allowed continuous tuning of the beam velocity.12

This has facilitated measurements of the collision energy
dependence of state-to-state integral cross sections down
to energies of 70 cm−1.13 Moreover, the velocity spread in
such decelerated beams is much smaller than in conventional
molecular beams. Thus far, an energy resolution of ≥13 cm−1

has been achieved for collisions of OH radicals with rare gas
atoms.13–15 This resolution is mainly limited by the velocity
and angular spread of the atomic collision partner and is too
low to experimentally resolve scattering resonances. A recent
study has shown that the energy resolution can be improved
significantly by an appropriate choice of the beam velocities
and interaction angle.16 When these measures are put into
practice in the laboratory, collision energy resolutions can
be obtained that may enable the observation of scattering
resonances.

Atom-molecule collisions are the simplest type of col-
lision process in which rotationally inelastic transitions can
be observed. Early calculations17, 18 on rotationally inelastic
scattering of N2 molecules with He atoms have shown that
resonances occur at low collision energies, but the experi-
mental verification of these predictions was not yet possi-
ble. Collisions of OH(X2�) with rare gases have emerged
as paradigms of scattering of an open-shell molecule with an
atom.13, 15, 19–24 The OH-rare gas systems are good candidates
for the observation and analysis of resonances in rotationally
inelastic collisions because the collision energy can be re-
duced by Stark deceleration of the OH beam. Since OH(X2�)
is an open-shell molecule with orbital degeneracy, the colli-
sion dynamics is governed by two PES’s,25 and interesting
multi-state dynamics can occur. Of particular interest for the
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study of resonances are the OH-He and OH-Ne systems, since
the dissociation energies of these systems are smaller than the
rotational level spacings of the OH radical. The resonance fea-
tures associated with the various rotational levels are therefore
well separated. The shallow van der Waals wells support only
one or two stretch vibrational levels,26 resulting in a rather
simple, yet interesting, analysis of the resonances. Shape res-
onances in OH-He collisions were previously analyzed by
Dagdigian and Alexander24 in a study of elastic depolariza-
tion. Bound states of the OH-He complex have been investi-
gated spectroscopically by Han and Heaven, who identified
complex features as scattering resonances in OH(A)-He.27

Here, we present a detailed and precise study of scatter-
ing resonances in the OH-He and OH-Ne systems, in order
to develop insight into the nature and strength of the reso-
nances and to assist in the experimental search for such scat-
tering resonances. For the OH-He system, we have calculated
new three-dimensional potential energy surfaces. The colli-
sion energy dependence of the relative state-to-state integral
scattering cross sections that are derived from these potentials
compares more favorably with recent experiments15 than the
results from previous calculations. For the correct assessment
of the resonances, the calculations are performed on a very
fine grid of collision energies, and particular care is taken to
converge the calculations to avoid numerical artifacts to be
interpreted as resonant structures.28 We characterize the reso-
nances with various techniques, including the adiabatic ben-
der model29, 30 and collision lifetime analysis.31 We investi-
gate how the differential cross section for several transitions
changes as the collision energy is scanned through the reso-
nances, and observe dramatic effects.

This paper is organized as follows: The details of the scat-
tering calculations are briefly presented in Sec. II. In Sec. III
we describe the new three-dimensional (3D) PES’s that are
developed for OH-He. Section IV describes our calculations
on the state-to-state scattering cross sections in OH-He colli-
sions. A detailed analysis of shape and Feshbach resonances
is given. Section V presents similar results for the OH-Ne sys-
tem. A discussion of the prospects for observing these reso-
nances in crossed beam experiments using a Stark decelera-
tor, by either recording the integral or the differential cross
sections, follows in Sec. VI.

II. SCATTERING CALCULATIONS

The theory of scattering between a molecule in a 2� elec-
tronic state and a structureless atom is well established.25 The
interaction can be described by two PES’s corresponding to
states of A′ and A′′ symmetries. For OH-He, we have con-
structed new PES’s, which are explained in Sec. III, while
for OH-Ne, we used the PES’s by Sumiyoshi et al.32 Close-
coupling calculations were performed both with the HIBRI-
DON suite of programs,33 and with a second independent
scattering program for open-shell diatom-atom scattering de-
scribed in Ref. 34. Care was taken to independently check the
results with the two scattering programs and to converge the
cross sections. For OH-He, the maximum total angular mo-
mentum was J = 100.5–140.5, depending on the collision en-
ergy, and the channel basis consisted of all rotational levels

FIG. 1. Energies of the lower rotational levels of OH(X2�). The �-doublet
splitting is exaggerated for clarity. The initial level for all scattering calcula-
tions is the j = 3/2, F1, f level.

of OH with j ≤ 6.5, while for OH-Ne the channel basis con-
sisted of all rotational levels with j ≤ 7.5. In this paper, we
calculate cross sections from fully converged close-coupling
calculations in order to study resonances in inelastic collisions
between low-lying rotational states of the OH radical. The cal-
culations resulted in a convergence of all cross sections within
1%, where we note that the elastic cross section is the hardest
to converge. For reference, the energies of the lower rotational
levels of OH(X2�) are displayed graphically in Fig. 1.

III. 3D OH-HELIUM POTENTIAL

A crucial role in the scattering calculations is played by
the interaction potential. In Ref. 34, a detailed experimental
and theoretical study of inelastic scattering between OH rad-
icals and the rare gas atoms He, Ne, Ar, Kr, and Xe was per-
formed. The theoretical results in that study were shown to be
in excellent agreement with experimentally measured inelas-
tic cross sections. The agreement between theory and experi-
ment was, although still very good, the worst for the OH-He
system. It was believed that this was due to the quality of the
PES, since for the OH-He system a smaller basis set was used
in the calculations than for the other systems. For this reason,
we construct here a new potential for the OH-He system. We
note that in Ref. 34, the experimental resolution was unfortu-
nately not yet high enough to observe resonances.

In trying to improve the agreement with the experimen-
tal results, we first constructed new 2D PES’s for OH-He
collisions. This was done by enhancing the basis set for the
coupled-cluster calculations of the interaction energy from the
augmented triple-zeta correlation-consistent basis set (AVTZ)
used by Lee et al.26 to the quintuple-zeta basis set (AV5Z). We
computed the interaction energies with the open-shell single
and double excitation coupled cluster method with perturba-
tive triples as implemented in the MOLPRO package.35 The
interaction energies were evaluated for 288 geometries on a
two-dimensional grid with 12 Gauss-Legendre points in the
Jacobi-angle θ . The OH bond length was fixed at the vibra-
tionally averaged distance of r0 = 1.8502 a0, whereas Lee
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FIG. 2. Illustration of the OH molecule and the He atom containing the rele-
vant coordinates as used in the fitting of the OH-He potential. R is the length
of the vector R that connects the He atom and the center-of-mass (Q) of the
OH molecule, while θ is the angle between R and the OH bond vector r
(pointing from O to H) of length r. Ra is the length of the vector Ra that con-
nects the He atom and the H atom, while θa is the angle between Ra and r.
Rb is the length of the vector Rb that connects the He atom and the O atom,
while θb is the angle between Rb and −r. The point X marks the location of
the midbond orbitals.

et al.26 used the equilibrium distance re. The relevant geom-
etry is illustrated in Fig. 2. We included midbond orbitals
(3s,3p,2d,1f,1g) with the exponents of Ref. 36. These mid-
bond functions were centered on the vector R that connects
the He atom and the center-of-mass of the OH molecule, at a
distance from the helium atom that is half the distance of the
helium atom to the nearest atom of the OH molecule. Also the
counterpoise correction of Boys and Bernardi was applied.37

The grid of atom-molecule separations consisted of 18 points
ranging from R = 3 a0 to 9 a0 at short range and 6 points on
an approximately logarithmic scale up to 25 a0 at long range.

As mentioned before, two potential energy surfaces be-
longing to states of A′ and A′′ symmetry are involved in
the OH-rare-gas atom scattering. The average Vs and half-
difference Vd of these potentials can be expanded in Racah
normalized spherical harmonics Cl, m, namely

Vs = VA′ + VA′′

2
=

lmax∑
l=0

vl,0(R)Cl,0(θ, 0),

Vd = VA′′ − VA′

2
=

lmax∑
l=2

vl,2(R)Cl,2(θ, 0),

(1)

where we included all terms up to lmax = 11. In the long range
(R > 10 a0), the expansion coefficients vl,0(R) were fitted to
inverse powers R−n with n ≥ 6, namely

vlr
l,0(R, θ ) =

11∑
n=n0(l)

cl,n

fn(βR)

Rn
, (2)

where we note that the allowed values for n depend on l.38 For
example, for l = 0 we have n0(l) = 6 and only even values of
n are present, while for l = 1 we have n0(l) = 7 and only odd
values of n are present. From the fitted coefficients we only
kept the leading long-range terms for l = 0 to l = 4. We used
the Tang-Toennies damping function39

fn(x) = 1 − e−x

n∑
k=0

xk

k!
(3)

to damp these five long-range terms in the short range with
β = 0.6 a−1

0 . In the short range (R < 5.5 a0), the expansion
coefficients vl,0(R) were fitted to an exponential, namely

vsr
l (R) = sle

−αlR. (4)

The difference between the ab initio interaction energies and
the analytic long range and short range functions was fitted
with a reproducing kernel Hilbert space (RKHS) method.40

The RKHS parameter m was chosen such that the RKHS fit
would decay faster than the leading long-range term for each
l. The RKHS smoothness parameter was set to 2. For the ex-
pansion coefficients of the difference potential, vl,2(R), no an-
alytic short range and long range fit was performed, so that
everywhere the RKHS method was used. Using the described
procedure, we obtained an accurate fit to the ab initio points.
More details of the fit can be found on EPAPS,41 where we
provide a FORTRAN 77 code for the two-dimensional AV5Z
potential.

We found that the absolute minimum of the fitted
potential is located at θ = 68.7◦, R = 5.69 a0 on the
A′ PES, corresponding to an interaction energy of VA′

= −29.8 cm−1. The minimum potential energy values for
θ = 0◦ and θ = 180◦ were found at R = 6.56 a0 and
R = 6.09 a0, giving rise to VA′/A′′ = −27.1 cm−1 and
VA′/A′′ = −21.6 cm−1, respectively. For comparison, we also
mention the values obtained by Lee et al.,26 who found
that the absolute minimum of their potential was located at
θ = 68.6◦, R = 5.69 a0 for A′ symmetry, with an interac-
tion energy of VA′ = −30.0 cm−1. The minimum values for
θ = 0◦ and θ = 180◦ were found at R = 6.54 a0 and
R = 6.09, giving rise to VA′/A′′ = −27.1 cm−1 and VA′/A′′

= −21.8 cm−1, respectively. The two potentials are seen to
give very similar results for the local and global minima.
Moreover, using the new AV5Z potential for scattering cal-
culations, we found only a very slight improvement in the
agreement with the experimental data.

Therefore, we tried to improve the PES further by tak-
ing the vibrational motion of the OH radical into account. To
this end, we computed the interaction energies of the OH-He
system on a three-dimensional grid. At short and intermedi-
ate range we used a step size of �R = 0.25 a0 for 3 a0 ≤ R
≤ 12.5 a0 and �r = 0.25 a0 for 0.75 a0 ≤ r ≤ 4.5 a0. For the
angle θ we used an equidistant grid of 16 points including 0◦

and 180◦ with a spacing of �θ = 12◦. At long range we used
four equidistant points between 14 ≤ R ≤ 20, while we used
a step size of �r = 0.5 a0 for 0.75 a0 ≤ r ≤ 4.25 a0. The dis-
tance r = 4.5 a0 was also included in the long-range fit. For the
angle θ we used an equidistant grid of 9 points with a spacing
of �θ = 22.5◦. On this grid we computed the interaction en-
ergies with a triple-zeta basis set (AVTZ) and using midbond
orbitals with geometry-dependent exponents.42 Especially for
large r and small R, the electronic structure calculations did
not always converge. Then, we obtained the energy for the
corresponding grid point by means of interpolation or extrap-
olation from neighbouring grid points.

To perform the fit of the sum interaction potential Vs, we
proceed in the following way. We represent the potential as a
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sum of three terms, namely

Vs(R, θ, r)

= V sr
s (Ra, θa, r) + V sr

s (Rb, θb, r) + V lr
s (R, θ, r), (5)

where the different coordinates are defined in Fig. 2. This
representation is convenient because the coordinates of the
first and second term of Eq. (5) are ideally suited to describe
the short-range behavior near the H and O atom, respectively,
while the coordinates of the third term are convenient to de-
scribe the long-range behavior. The short-range terms are fit-
ted by

V sr
s (Ri, θi, r) =

l0
max∑
l=0

e−βiRi Pl(cos θi)s
(i)
l

+
limax∑
l=0

ki
max∑

k=0

ni
max∑

n=0

Rn
i e

−βiRi Pl(cos θi)r
ke−αir

3
s

(i)
lnk,

(6)

where i = a, b, while Pl(x) are Legendre polynomials cor-
responding to the functions Cl, 0(θ , 0) of Eq. (1). We used
the values l0

max = 1, na
max = 3, ka

max = 8, lamax = 7, nb
max = 3,

kb
max = 8, and lbmax = 5. The long range term is fitted by

V lr
s (R, θ, r) =

13∑
n=6

n−4∑
l=0

fn(βR)

Rn
Pl(cos θ )cnl(r), (7)

where fn is the damping function of Eq. (3). Nonzero values
of cnl occur only for even values of l + n, and then they are
given by

cnl(r) = c0
nl +

3∑
k=0

rke−αnr
3
cnlk. (8)

We use two different values for αn, namely αn = αI for 6
≤ n ≤ 9, and αn = αII for 10 ≤ n ≤ 13. For the differ-
ence potential Vd similar fit functions are used, only now the
Legendre polynomials Pl(x) are replaced by associated Leg-
endre functions P 2

l (x) corresponding to the Racah spherical
harmonics Cl, 2(θ , 0) of Eq. (1), so that all sums start with
l = 2. Moreover, we use l0

max = 2, na
max = 5, ka

max = 5, lamax
= 6, nb

max = 5, kb
max = 4 and lbmax = 6. The linear and the

nonlinear fit parameters were determined by minimizing a
weighted least-squares error.

By evaluating the analytic representation of the poten-
tial on the ab initio grid, we were able to compare the fit-
ted energy values with the ab initio values. We found that we
only obtained a reliable fit for OH bond lengths r ≤ 3 a0. At
smaller values of R the largest relative error of an analytic
value compared to an ab initio value for r ≤ 3 a0 was 6.67%
for the sum potential and 1.10% for the difference potential.
At large R, again considering only r ≤ 3 a0, the largest rel-
ative error was 3.23% for the sum potential and 3.32% for
the difference potential. We also calculated the average rel-
ative error, which for the sum potential was 0.32% at short
range and 0.49% at long range, while for the difference po-
tential it was 0.04% in the short range and 0.90% in the long
range. In Fig. 3, we show two-dimensional contour plots of
the fitted OH-He A′ PES for r = 0.75 a0, r = 1.8324 a0, and
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FIG. 3. A′ potential energy surface. The OH radical lies on the horizontal
axis, with the center-of-mass of the molecule at the origin. The O atom lies
left of the origin, the H atom to the right. For each geometry of the complex,
defined by the OH bond length r and the position (xHe, yHe) of the He atom,
the interaction energy is calculated, resulting in contours with the unit of
cm−1. The three plots differ in the OH bond length, namely in panel (a) we
have r = 0.75 a0, in panel (b) r = 1.8324 a0, and in panel (c) r = 3.00 a0.

r = 3.00 a0, while in Fig. 4 the same plots are shown for the
fitted A′′ PES. For the equilibrium bond length re = 1.8324 a0,
our fit of the three-dimensional potential is in very close
agreement with the PES of Lee et al.,26 as it should, since both
PES’s were calculated with the same ab initio method using
the same basis set. The absolute potential energy minimum for
r = 1.8324 a0 is located at θ = 69.2◦, R = 5.69 a0 for A′ sym-
metry, leading to an interaction energy of VA′ = −30.0 cm−1.
The minimum values for θ = 0◦ and θ = 180◦ were found at R
= 6.55 a0 and R = 6.09, giving rise to VA′/A′′ = −27.2 cm−1

and VA′/A′′ = −21.7 cm−1, respectively. A FORTRAN 77 code
to generate the interaction potential V(R, θ , r) is made avail-
able as an EPAPS document.41

To use the three-dimensional potential for scattering, we
started with the three-dimensional AVTZ potential, and then
subtracted the values of this potential at r = r0 and added the
two-dimensional potential calculated for r = r0 at the AV5Z
level. This implies that the dependence of the intermolecular
potential on the most relevant coordinates for the scattering
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FIG. 4. Similar to Fig. 3, but showing the A′′ potential energy surface.

calculation, namely R and θ , is computed at the AV5Z level
for r = r0, while the variation of the potential with the OH
bond length r is taken into account at the AVTZ level. Our
next goal is to construct a 2D effective potential that can be
directly used for our scattering calculations, and which also
takes the internal OH vibrational motion into account. To this
end, we want to use a more accurate procedure than the direct
evaluation of the interaction potential at the equilibrium OH
bond length V(R, θ , re) or the vibrationally averaged bond
length V(R, θ , r0). The conceptually simplest way to achieve
this is to determine first the vibrational ground state of the
free OH radical, |v = 0〉, by solving the Schrödinger equation
for the free vibrating OH monomer. The corresponding OH
monomer Hamiltonian ĤOH contains the kinetic energy of the
vibrational motion T̂OH and the potential energy of the free
OH radical VOH(r),43 ĤOH = T̂OH + VOH. The vibrational
motion of the free OH radical is a standard one-dimensional
problem that is readily solved by standard numerical meth-
ods, such as the discrete variable representation based on
sinc-functions (sinc-DVR).44 The resulting normalized
groundstate wavefunction |0〉 can be used to calculate aver-

ages over the OH stretch motion. The vibrationally averaged
interaction potential defined as Vdia(R, θ ) = 〈0|V(R, θ , r)|0〉
may be called “diabatic”, since it is based on the approxima-
tion that the OH stretch motion is completely independent of
the motion of the OH molecule in the interacting complex.

A better approximation is to make an adiabatic separa-
tion between the coordinate r of the OH stretch motion and
the two other internal coordinates R, θ of the complex. To
this end, we add the OH monomer potential VOH(r) to the 3D
interaction potential V(R, θ , r). For each fixed R and θ , this
leads to a different one-dimensional Hamiltonian in r, namely
Ĥ ′

OH = ĤOH + V (R, θ, r), which we can again readily solve
for the OH vibrational motion using sinc-DVR. Taking the re-
sulting ground state energy E′

OH(R, θ ) = 〈0′|Ĥ ′
OH|0′〉 for each

R and θ and subtracting the ground state monomer vibrational
energy in the absence of the He atom, EOH = 〈0|ĤOH|0〉, then
gives our adiabatic two-dimensional PES Vad(R, θ ). Note that
for each R and θ the ground state |0′〉 differs from the ground
state |0〉 of free OH and, in principle, can be written as a
linear combination of the ground and excited states |v〉 of free
OH. It is the potential from the adiabatic separation procedure
that we use in the following, where we note that the resulting
“adiabatic” potential Vad(R, θ ) is very similar to the “diabatic”
potential Vdia(R, θ ). This might have been expected, since
the vibrational levels of OH are well separated in energy, so
that the weak OH-He interaction only gives rise to a slight
admixture of the higher vibrational states |v〉 of OH.

The inelastic OH-He cross sections with OH initially
in the j = 3/2, F1, f level were calculated with the adia-
batic potential. The results are shown in Fig. 5, where the
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FIG. 5. Relative state-to-state inelastic scattering cross sections of OH (X2�,
j = 3/2, F1, f) radicals with He atoms. The experimental data points from
Ref. 34 are shown as dots, while the theoretically calculated cross sections
with the potential of Lee et al.26 are included as solid curves, and the results
with the adiabatic potential as dashed curves. On the vertical axes of the plots,
100% refers to the total inelastic cross section. Relative cross sections for
inelastic collisions populating the (a) j = 3/2, F1, e (black), j = 5/2, F1,
e (purple), and j = 5/2, F1, f (orange) states; (b) the j = 1/2, F2, e (brown)
and j = 3/2, F2, f (pink) states; (c) the j = 1/2, F2, f (red) and j = 3/2, F2, e
(blue) states; (d) the j = 7/2, F1, e (green) and j = 7/2, F1, f (cyan) states.

Downloaded 06 Nov 2012 to 131.174.83.70. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



144308-6 Gubbels et al. J. Chem. Phys. 136, 144308 (2012)

experimental data of Ref. 34 is also shown, as well as the
scattering results obtained with the potential of Lee et al.26

The theoretical data are convoluted with the experimental
energy resolution. To this end a Gaussian energy distribution
is taken with a standard deviation that is a function of the
energy. The value of the standard deviation ranges from
24 cm−1 at low collision energies to 59 cm−1 at the highest
collision energies. We note that the relative cross sections
are plotted, rather than the absolute cross sections, because
these relative cross sections are experimentally measured.
More details can be found in Refs. 13 and 34. We see from
Fig. 5 that the overall the agreement with experimental data
has improved noticeably with the adiabatic potential.

IV. OH-HELIUM COLLISIONS

A. State-to-state integral cross sections

For OH-He collisions, the state-to-state scattering cross
sections were calculated with the adiabatic potential described
in Sec. III. In Fig. 6, the energy dependence of the state-to-
state integral cross sections for several transitions out of the
j = 3/2, F1, f level of OH are shown. This level, which is the
higher �-doublet component of the ground rotational level
(see Fig. 1), can be selected with the Stark decelerator since it
is low-field seeking in an inhomogeneous electric field.13 The
cross sections are computed on a very fine grid of energies to
be able to study resonant features in detail.

Away from the resonances, these results are in reasonable
agreement with those previously reported by Kłos et al.,21 as
discussed in Sec. III. As noted by these authors, there is a
propensity for transitions preserving the total parity. The cross
sections are found to be smaller for transitions with large en-
ergy gaps. The initial and final levels of the two transitions
shown in Fig. 6(a) have a rather large energy separation (>100
cm−1), and the total parity is inverted during the transitions.
Hence, the cross sections for these transitions are small.

Resonances can be observed in Fig. 6 near the collision
energies corresponding to thresholds for excitation of the OH
radical to higher rotational and spin-orbit levels. Both shape
resonances, which appear right above the threshold energies
for the final levels, and Feshbach resonances, which appear
near the energies where higher rotational levels than the con-
sidered outgoing channel become open, are present. Except
for the j = 3/2, F1, f → j = 3/2, F1, e and the j = 3/2, F1,
f → j = 1/2, F2, f transitions, the Feshbach resonances are not
significant compared with the background continuum. The
j = 3/2, F1, f → j = 3/2, F1, e transition dominates at low
collision energies and also gives rise to shape resonances
with cross sections peaking above 10 Å2. However, these
shape resonances occur at collision energies of only a few
wavenumbers.

In the following subsections, we analyze the shape reso-
nances in the j = 3/2, F1, f → j = 5/2, F1, e transition and
the Feshbach resonances in the j = 3/2, F1, f → j = 1/2, F2,
f transition. The former transition has a large cross section;
the latter transition exhibits strong resonances that show the
largest enhancement compared to the background.

FIG. 6. State-to-state integral cross sections vs. collision energy for transi-
tions out of the OH j = 3/2, F1, f level in collisions with He. The final levels
are indicated for each transition for which the cross section is plotted.

B. Shape resonances

Shape resonances result from quasi-bound states of the
van der Waals complex formed by the collision partners at
energies just above the threshold for the final level. All inte-
gral cross sections plotted in Fig. 6 display shape resonances.
In this subsection we analyze the shape resonances associated
with the j = 3/2, F1, f → j = 5/2, F1, e transition since it has
a large integral cross section. Figure 7(a) displays these reso-
nances on an expanded energy scale. Several maxima, with
increasing peak width vs. energy, can be observed, as was
also previously found24 for OH-He and other He-molecule
systems.5, 45, 46

To gain more insight, we employ the adiabatic ben-
der model29, 30 to analyze the shape resonances. The method
is similar to the previous analysis of OH-He collisions by
Dagdigian and Alexander,24 except that we used a close-
coupling channel basis instead of a coupled-states one. The
full Hamiltonian with the inclusion of Coriolis coupling and
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FIG. 7. (a) State-to-state integral cross sections vs. collision energy for the
j = 3/2, F1, f → j = 5/2, F1, e transition of OH in collisions with He (thick
line), and the integral cross section convoluted with Gaussian energy distri-
butions of FWHM of 1 and 5 cm−1 (thin lines). (b)–(e) Differential cross
sections dσ /d	 of the above transition at several energies marked as dashed
lines with Roman numerals in (a), together with the differential cross sections
convoluted with Gaussian energy distributions as in (a).

only the radial nuclear kinetic energy excluded is diagonal-
ized as a function of R. The eigenvalues define a set of adi-
abatic bender potential energy curves, which are labeled by
the total angular momentum J, the total parity p of the scat-
tering wavefunction, and the cardinal index n of the eigen-
value. In this paper, we will use the symbol J (+)

n and J (−)
n to

label close-coupling adiabatic bender curves with p = +1 and
p = −1, respectively.

Figure 8 shows several adiabatic bender curves that cor-
relate with the OH j = 5/2, F1, e level. The curves marked
with 5/2(+)

1 and 3/2(+)
1 are the two lowest lying adiabatic ben-

der curves, each of which supports only one bound stretch
level, with energies of 77.47 cm−1 and 78.15 cm−1, respec-
tively. As J and n increase, the curves move up in energy and
the well depths become smaller. As a consequence, some of
the bound levels become quasi-bound, and for the high lying
curves (for example, the 15/2(+)

2 curve shown in Fig. 8) the
wells are too shallow to support any quasi-bound levels.

To compute the energies of the shape resonances, we treat
the adiabatic bender curves in conventional one-dimensional
scattering problems and calculate the phase shift. We should
be able to observe rapid changes by π , signifying resonances,
in the collision energy dependence of phase shift.4 Figure 9
shows the phase shift as a function of collision energy for
two sets of adiabatic bender curves that have such a feature.
We see from Fig. 9 that resonances in six adiabatic bender

FIG. 8. Plots of the OH-He adiabatic bender curves that correlate with the
OH j = 5/2, F1, e level, obtained from close-coupling calculations. Curves are
labeled with J

(p)
n , where J, p, and n are the total angular momentum, the total

parity of the scattering wavefunction, and the cardinal index, respectively.

curves contribute to each of the two major peaks shown in
Fig. 7(a) (labeled as I and II), which occur at 84.8 and
87.6 cm−1, respectively. The resonance features in Figs. 7(a)
and 9 match well both in energy and width.

It is also interesting to compare the differential cross
sections for collision energies on and off a resonance.

FIG. 9. Phase shifts as a function of collision energy for OH(j = 5/2, F1,
e)-He collisions, obtained from close-coupling adiabatic bender curves de-
scribed in the text and shown in Fig. 8. Panels (a) and (b) correspond to the
maxima shown in Fig. 7(a) at 84.8 and 87.6 cm−1, respectively. The black
dashed line in panel (b) is extrapolated from the phase shift for the 15/2(+)

1
adiabatic bender curve at non-resonant energies, and the gray vertical arrow
indicates the corresponding resonance energy. Curves are labeled with J

(p)
n ,

where J, p, and n are the total angular momentum, the total parity of the
scattering wavefunction, and the cardinal index, respectively.
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Figures 7(b)–7(e) display differential cross section for several
energies marked in Fig. 7(a) with Roman numerals. The cen-
ter of the two major peaks are marked as I and II, while III and
IV correspond to non-resonant energies. We observe signifi-
cant backward scattering for energies I and II, likely because
of an increased time delay of collision due to the formation
and decay of quasi-bound levels of the van der Waals com-
plex. Backward peaks are insignificant for energies III and
IV. We will further discuss this topic in the next subsection.

C. Feshbach resonances

In Feshbach resonances, quasi-bound levels of the colli-
sion complex associated with a given rotational level dissoci-
ate to yield the molecule in a lower-energy rotational level.
We consider here Feshbach resonances associated with the
j = 3/2, F1, f → j = 1/2, F2, f transition. This transition was
chosen for detailed study since the resonance features show
a ca. 4-fold increase over the continuum background (see
Fig. 6). Figure 10(a) displays these resonances on an ex-
panded energy scale.

It is seen that a rich set of Feshbach resonances exists in
a collision energy range of several cm−1 below the energetic
threshold for opening of the F2, j = 3/2 level at 188 cm−1.
Figure 11 displays the contribution to the integral cross sec-
tion for the j = 3/2, F1, f → j = 1/2, F2, f transition from
various values of the total angular momentum J (partial cross
sections). The individual partial cross sections exhibit one
or more peaks, and their energies shift toward higher colli-
sion energy as J increases. For J ≥ 13/2, no significant reso-
nances can be found in the energy dependence of partial cross
sections.

We performed an adiabatic bender analysis similar to that
described in Subsection IV B. We calculated adiabatic ben-
der potentials by diagonalizing the Hamiltonian expressed in
a close-coupling channel basis. Since all possible values of
l (the orbital angular momentum of the van der Waals com-
plex) are included in the channel basis, there are multiple
adiabatic bender curves for each value of J. These adiabatic
bender curves look similar to those shown in Fig. 8 and are
not plotted here. The energies of the van der Waals stretch
levels supported by these curves were derived using a fixed
step-size discrete variable representation (DVR) method.47, 48

To treat levels that might be quasi-bound, an infinite barrier
was placed at the maximum of the centrifugal barrier on each
adiabatic bender potential. For curves associated with large
J, this approximation will lead to calculated energies higher
than they should be and could lead to significant error. These
computed energies are shown as dotted lines in Fig. 11. There
is a reasonable match between the energies of the resonances
and of the bend-stretch levels, especially for small J.

Figures 10(b)–10(j) display the differential cross section
for the OH j = 3/2, F1, f → j = 1/2, F2, f transition at sev-
eral energies marked on Fig. 10(a) with Roman numerals. The
energies at I and IX are not at a resonance, and the differ-
ential cross sections show little backward scattering, while
II–VIII correspond to resonance energies, for which some
backward scattering can be observed. The shapes of the differ-

FIG. 10. (a) State-to-state integral cross section vs. collision energy for the
j = 3/2, F1, f → j = 1/2, F2, f transition of OH in collisions with He (black
line), and the integral cross section convoluted with Gaussian energy distribu-
tions with FWHM of 1 (red line) and 5 cm−1 (blue line). (b)–(j) Differential
cross sections dσ /d	 of the above transition at several energies marked as
dashed lines and Roman numerals in (a), together with the convoluted differ-
ential cross sections with Gaussian energy distribution as in (a).

ential cross sections are quite different at resonance energies
compared to collision energies away from the resonances.

A simple way to analyze the resonances and to qual-
itatively explain backward scattering appearing in differen-
tial cross sections is to calculate the collision lifetime, which
is the difference between the time that the collision part-
ners spend in each other’s neighborhood with and without
the interaction.31, 49, 50 For a direct comparison with the par-
tial cross sections shown in Fig. 11, we compute the collision
lifetime from initial state γ to final state γ ′ for individual total
angular momenta J, defined as

�tJγγ ′(E) = Re

⎡
⎣−i¯

∑
l,p,l′,p′

δpp′
(
SJ

γ,γ ′,l,l′
)∗ dSJ

γ,γ ′,l,l′

dE

⎤
⎦ ,

(9)
where l, p and l′, p′ denotes the orbital angular momentum
and parity of initial and final levels, respectively, and SJ

γ,γ ′,l,l′

denotes S-matrix elements for total angular momentum J
from close-coupling calculations. The lifetimes vs. J for the

Downloaded 06 Nov 2012 to 131.174.83.70. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



144308-9 Gubbels et al. J. Chem. Phys. 136, 144308 (2012)

FIG. 11. Partial cross sections vs. collision energy for the j = 3/2, F1, f → j
= 1/2, F2, f transition of OH in collisions with He for total angular momen-
tum J ≤ 11/2. The dotted vertical lines denote the computed energies of the
van der Waals stretch levels supported by the close-coupling adiabatic bender
curves.

j = 3/2, F1, f → j = 1/2, F2, f transition are plotted in Fig. 12.
Clearly, the resonance peaks in Fig. 11 are well reproduced,
with collision lifetimes of a few picoseconds. The most in-
tense resonance peak lies at 186.4 cm−1, which was largely
due to the J = 9/2 partial cross section. From Fig. 12 we see

FIG. 12. Collision lifetime �tJ(E) as a function of collision energy for the
OH j = 3/2, F1, f → j = 1/2, F2, f transition in collisions with He, as defined
in Eq. (9) of the text, for total angular momenta J = 1/2 – 11/2.

that the corresponding lifetime is about 6 ps. We can compare
this collision lifetime with the rotational period of the OH-He
van der Waals complex. We estimate the rotational constant
of the complex to be 0.32 cm−1 from the expectation value of
1/R2 computed with the wavefunction obtained from the DVR
method on the lowest lying J = 9/2 adiabatic bender curve.
This corresponds to a rotational period 14.9 ps, assuming
l = 3.

We thus conclude that the collision lifetime has the same
order of magnitude as the rotational period of the OH-He
complex. It is therefore not surprising to observe signifi-
cant backward scattering at some resonance energies. At off-
resonance energies the collision lifetime will be 
1ps, which
is much smaller than the OH-He rotational period. Hence,
backward scattering is expected to be barely observable.

V. OH-NEON COLLISIONS

To describe the interaction between OH and Ne, we
used the PES of Sumiyoshi et al.32 This PES was calculated
using an explicitly correlated, spin-unrestricted coupled-
cluster approach [UCCSD(T)-F12b] with a quintuple-zeta
basis set (AV5Z). Although Sumiyoshi et al. calculated
a three-dimensional potential, we used in Ref. 34 their
interaction potential evaluated at the equilibrium distance
re = 1.832 a0 for the scattering calculations, so that no
effect of the OH vibrational motion was included. In that
reference it was shown that this procedure already gives
excellent agreement between theory and high-precision scat-
tering experiments for OH-Ne collisions. Since we found in
Sec. III that the vibrational motion of OH can be of quantita-
tive influence, we also calculated an adiabatic potential from
the three-dimensional potential of Sumiyoshi et al. in the
same way as we did for OH-He. The resulting adiabatic po-
tential was found to improve slightly the excellent agreement
with the experimental results for the scattering of OH and Ne.
In the present study, we use the adiabatic potential throughout
and compute the cross sections on a much finer grid than in
the study by Scharfenberg et al.34 in order to study scattering
resonances. In Fig. 13, we show the energy dependence of
state-to-state integral cross sections for collisions of the OH
radical with Ne atoms, where the OH radicals are initially in
the j = 3/2, F1, f level. Overall, the behavior of the inelastic
cross sections as a function of energy is rather similar to what
was observed for the OH-He system in Sec. IV. For example,
we again observe a propensity for transitions preserving
the total parity. However, in the OH-Ne system none of
the channels appears to have particularly strong Feshbach
resonances, as was the case for the j = 3/2, F1, f → j = 1/2,
F2, f transition of the OH-He system. The most pronounced
resonant features observed for OH-Ne collisions are shape
resonances in the j = 3/2, F1, f → j = 5/2, F1, f transition. In
Fig. 14 we show these shape resonances in more detail.

Looking closely at Fig. 14, we see several resonance
peaks that correspond to an increase in the cross section by
about a factor of two compared to the nonresonant energies.
A relatively strong resonance occurs at a collision energy
of 99.23 cm−1; this resonance increases the cross section
by a factor of four compared to the background. The latter
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FIG. 13. State-to-state inelastic scattering cross sections of OH (X2�3/2, j
= 3/2, f) radicals with Ne atoms as a function of the collision energy. Cross
sections for inelastic collisions populating the (a) j = 3/2, F1, e (black) and
the j = 5/2, F1, e (purple) states; (b) the j = 5/2, F1, f (orange), j = 1/2, F2,
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j = 1/2, F2, f (red), j = 3/2, F2, e (blue), and the j = 7/2, F1, f (cyan) states.

resonance is indicated by the roman numeral V. The main
contributions to this resonance originate from partial cross
sections with total angular momenta of J = 37/2 and
J = 39/2. In Fig. 14, we also show the differential cross
sections for several energies that are marked by roman
numerals in panel (a). For the resonances at collision energies
of 86.83, 94.90, and 99.23 cm−1, the cross sections are shown
in the panels (b), (d), and (f). In these plots, large amplitudes
for backscattering are observed. To compare, the differential
cross sections were also calculated away from the resonances
at the energies 93.00, 98.00, and 101.00 cm−1, and the results
are shown in the panels (c), (e), and (g). In the case of nonres-
onant scattering, the observed backscattering is significantly
reduced. The differential cross sections at these resonances
look similar to those at the shape resonances for the j = 3/2,
F1, f → j = 5/2, F1, e transition of the OH-He system (see
Fig. 7), where also an increase in backscattering was found.
With a measurement of the differential cross sections, the
strong increase and decrease in the backscattering might help
in experimentally identifying the shape resonances at 94.90
and 99.23 cm−1. However, we note that one must be careful
with identifying the backscattering signal with resonances in
the cross section. Namely, in Fig. 14(a) also less pronounced
resonances are seen, and not all of them have such a strong
backscattering signal as the strongest resonances I, III, and V.
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FIG. 14. (a) Integral cross section for collisions of OH radicals with Ne
atoms as a function of the collision energy. The initial state of the OH radical
is j = 3/2, F1, f state and the final state is j = 5/2, F1, f state. The blue curve
shows the theoretical results without any convolution, the red curve shows the
integral cross section convoluted with a Gaussian energy distribution having
a FWHM of 1 cm−1, while for the green curve a FWHM of 5 cm−1 was
used. At the collision energies designated with the roman numerals I–VI, dif-
ferential cross sections were calculated, shown in panels (b) to (g). Again the
blue curves are not convoluted, while for the red curves a FWHM of 1 cm−1

was used, and for the green curves a FWHM of 5 cm−1. At the scattering
resonances (I, III, and V), strong backscattering is observed.

Moreover, closer to the threshold of the j = 3/2, F1, f → j
= 5/2, F1, e transition significant backscattering is observed
away from the resonances.

VI. DISCUSSION

The experimental observation of resonance structures as
discussed in this paper would comprise a very detailed test
for the calculated PES’s and scattering calculations on these
PES’s. The Stark deceleration technique provides a source
of state-selected molecules with a tunable velocity and nar-
row velocity distribution. This technique enables state-to-state
scattering experiments in which the collision energy can be
precisely tuned over a wide range with a high collision en-
ergy resolution. Yet, the observation of scattering resonances
requires an energy resolution that has not yet been achieved in
this type of experiments. In this section, we analyze the colli-
sion energy resolution required to observe resonance features
in either the state-to-state integral or the differential cross sec-
tions for OH-He and OH-Ne collisions. We discuss the re-
quirements on the beam velocity and angular distributions,
and discuss the feasibility of obtaining these distributions.

Referring back to Figs. 7, 10, and 14, the most prominent
resonance structures are found for OH-He in the j = 3/2,
F1, f → j = 3/2, F1, e, j = 3/2, F1, f → j = 5/2, F1, e and
the j = 3/2, F1, f → j = 5/2, F2, f transitions. For OH-Ne
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curves have been given a vertical offset for reasons of clarity.

collisions the j = 3/2, F1, f → j = 5/2, F1, f channel is
of most relevance. To simulate what would be observed
in a molecular beam scattering experiment, the integral
cross sections in Figs. 7, 10, and 14 are convoluted with
Gaussian collision energy distributions of 1 and 5 cm−1 full
width at half maximum (FWHM). In Fig. 15, the resonance
structure at collision energies around 85 cm−1 for the j = 3/2,
F1, f → j = 3/2, F1, e channel in OH-He collisions is shown.
This scattering channel displays a number of Feshbach reso-
nances, corresponding to the opening of the j = 5/2, F1 chan-
nel, that are grouped within a relatively narrow range of col-
lision energies. The theoretical curve is convoluted using 0.5,
1, 2, and 5 cm−1 (FWHM) energy distributions. We will use
this scattering channel as a benchmark to establish the energy
resolution required in the experiments to observe signatures
of scattering resonances. Scattering resonances are partially
resolved for energy resolutions of ≤ 1 cm−1. When a resolu-
tion between 1 and 2 cm−1 is achieved, some of the resonance
structure is resolved, while for resolutions of 5 cm−1, most of
the resonance structure has disappeared. In these cases, at best
only a broad peak is observed in the integral cross section.

For given beam velocity and angular spread, the collision
energy distribution is a function of the collision energy; the
highest resolutions are obtained for the lowest collision ener-
gies. We can estimate the beam parameters required to reach
collision energy distributions of ≤ 2 cm−1 at a collision en-
ergy of 85 cm−1 for collisions of Stark-decelerated OH radi-
cals with He atoms, i.e., to (partially) resolve the scattering
resonances shown in Fig. 15. We assume a beam intersec-
tion angle of 45◦ and choose the velocities of the He and OH
beams such that the relative velocity vector is perpendicular to
the He atom velocity vector. In this geometry, the collision en-
ergy distribution is almost independent of the He atom beam
velocity spread.16 A collision energy of 85 cm−1 is reached
for He and OH velocities of 790 m/s and 1120 m/s, respec-
tively. In the chosen geometry, the most critical parameter that
determines the collision energy resolution is the distribution
in beam intersection angles �φ. If we assume extremely well
collimated beams such that �φ = 10 mrad (corresponding to

0.6◦), a velocity spread of the OH radicals of 5 m/s results in
a collision energy resolution of 1.9 cm−1.

Experimentally, the most challenging requirement is the
angular spread of both beams. Multiple collimation slits for
both the OH and He beams are required to reach the re-
quired angular spreads. The required He atom velocity can
be obtained using a cryogenic source that is maintained at a
temperature of 60 K, and the required OH velocity can be
produced using the Stark decelerator. The required velocity
spread for the OH radicals can be obtained using the Stark
decelerator, either by choosing the appropriate phase angle in
the decelerator, 51 or by additional phase-space manipulation
techniques.52 For the OH-Ne system, even more stringent re-
quirements apply to the beam distributions due to the higher
reduced mass for this system. Beam speeds of 664 m/s and
470 m/s for the OH radical beam and Ne atom, respectively,
will result in a collision energy of 85 cm−1 using a beam
crossing angle of 45◦. For the velocity and angular distribu-
tions used above for OH-He, a collision energy distribution of
2.1 cm−1 is obtained.

The signatures of scattering resonances can also be in-
ferred from differential cross sections. State-to-state differen-
tial cross sections can be measured using the velocity map
imaging technique, that provides the full angular and velocity
distribution of the scattered molecules.53 Alternatively, infor-
mation on the differential cross section may be obtained via
Doppler profile measurements of the scattered molecules. The
backward scattered components that appear in the differential
cross sections when a resonance is accessed offers interesting
prospects to reveal the existence of resonances. As the col-
lision energy is tuned over a group of scattering resonances,
the presence of these resonances can in principle be inferred
from the measured product flux at backward scattering an-
gles. In Figs. 7, 10, and 14, the differential cross sections
are shown at collision energies near and at the resonances,
convoluted with Gaussian collision energy distributions of 1
and 5 cm−1 FWHM. In particular for the j = 3/2, F1, f → j
= 5/2, F1, f channel in OH-Ne, a significant scattering inten-
sity at backward scattering angles remains, even for a colli-
sion energy resolution as high as 5 cm−1. In the integral cross
section, no signature of the scattering resonances is observ-
able at these energy resolutions. In these cases, it may be fa-
vorable to experimentally explore the existence of resonances
via measurements of differential cross sections instead of in-
tegral cross sections.

The examples treated above show that collision energy
resolutions in the 1–2 cm−1 range should allow for the
observation of both shape and Feshbach resonances in the
integral cross sections for inelastic collisions between OH
radicals and He or Ne atoms. Although these resonances may
be difficult to detect using current experimental techniques
because of their narrow width, they should be an impetus for
the future development of highly resolved experiments. The
Stark deceleration technique is one of the most promising
techniques to reach the required collision energies and energy
resolutions. The OH radical is an excellent candidate in these
experiments, as a sensitive detection scheme, appropriate for
ion imaging, has recently been developed for this species.54

In addition, the relatively large rotational spacing of the
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molecular levels results in a molecular beam pulse with less
initial population in excited rotational states, and therefore
a packet of Stark-decelerated OH radicals with a high state
purity. This facilitates the sensitive and background free de-
tection of scattering products and enables the implementation
of beam collimators that improve the angular and velocity
spreads of the beams at the cost of particle densities. The
disadvantage of the large rotational spacing, however, is the
relatively high energies of the energetic thresholds for in-
elastic scattering, and corresponding relatively high collision
energies at which scattering resonances appear. In this respect,
the inelastic scattering of OD radicals or ND3 molecules with
He and Ne atoms will be interesting candidates for studying
scattering resonances as well, reducing the energy for the
lowest lying threshold to 42 cm−1 and 14 cm−1, respectively.
To reach a collision energy resolution ≤ 2 cm−1 at these en-
ergies will relax the requirements on the velocity and angular
spreads of both beams. We will investigate resonance effects
in the rotationally inelastic scattering of OD and ammonia
molecules with He atoms in forthcoming publications.

VII. CONCLUSIONS

We have presented detailed calculations on scattering
resonances in the rotationally inelastic scattering of OH rad-
icals with He and Ne atoms. For OH-He, we have developed
new 3D ab initio potential energy surfaces, and the inelastic
scattering cross sections that are derived from these surfaces
compare favorably with recent experiments. We have identi-
fied numerous scattering resonances – of both the shape and
Feshbach types – in the integral cross sections. We have ana-
lyzed these resonances using the adiabatic bender model and
computed collision lifetimes. We observe dramatic changes
in the differential cross sections at the resonances, showing in
selected cases a forward-backward peaking of the scattered
flux. The analysis of scattering resonances presented here
will be indispensable in the experimental search for such res-
onances in, for instance, crossed beam scattering experiments
using Stark-decelerated molecular beams. To experimentally
observe signatures of resonances in the integral cross sections
and to partially resolve individual resonances, a collision
energy resolution of ≤ 2 cm−1 is required. Obtaining energy
resolutions ≤ 2 cm−1 mainly requires highly collimated
molecular beams, which appears challenging. Alternatively,
signatures of scattering resonances may be found in the dif-
ferential cross sections. The selective detection of scattered
molecules at backward scattering angles may facilitate the
identification of resonances if the collision energy resolution
is not sufficient to resolve them in the integral cross sections.
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