8 research outputs found

    Stationkeeping Monte Carlo Simulation for the James Webb Space Telescope

    Get PDF
    The James Webb Space Telescope (JWST) is scheduled to launch in 2018 into a Libration Point Orbit (LPO) around the Sun-Earth/Moon (SEM) L2 point, with a planned mission lifetime of 10.5 years after a six-month transfer to the mission orbit. This paper discusses our approach to Stationkeeping (SK) maneuver planning to determine an adequate SK delta-V budget. The SK maneuver planning for JWST is made challenging by two factors: JWST has a large Sunshield, and JWST will be repointed regularly producing significant changes in Solar Radiation Pressure (SRP). To accurately model SRP we employ the Solar Pressure and Drag (SPAD) tool, which uses ray tracing to accurately compute SRP force as a function of attitude. As an additional challenge, the future JWST observation schedule will not be known at the time of SK maneuver planning. Thus there will be significant variation in SRP between SK maneuvers, and the future variation in SRP is unknown. We have enhanced an earlier SK simulation to create a Monte Carlo simulation that incorporates random draws for uncertainties that affect the budget, including random draws of the observation schedule. Each SK maneuver is planned to optimize delta-V magnitude, subject to constraints on spacecraft pointing. We report the results of the Monte Carlo simulations and discuss possible improvements during flight operations to reduce the SK delta-V budget

    Lunar Cube Transfer Trajectory Options

    Get PDF
    Numerous Earth-Moon trajectory and lunar orbit options are available for Cubesat missions. Given the limited Cubesat injection infrastructure, transfer trajectories are contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these transfers can be restricted by the selection or designs of Cubesat subsystems such as propulsion or communication. Nonetheless, many trajectory options can be considered which have a wide range of transfer durations, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several options including deployment from low Earth orbit (LEO), geostationary transfer orbits (GTO), and higher energy direct lunar transfers and the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory

    Trajectory Design for the Transiting Exoplanet Survey Satellite

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission, scheduled to be launched in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the Schematics Window Methodology (SWM76) launch window analysis tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements. Keywords: resonant orbit, stability, lunar flyby, phasing loops, trajectory optimizatio

    Trajectory Design for the Transiting Exoplanet Survey Satellite (TESS)

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission launching in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the SWM76 launch window tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements

    Landsat 9 Cross Calibration Under-Fly of Landsat 8: Planning, and Execution

    No full text
    During the early post-launch phase of the Landsat 9 mission, the Landsat 8 and 9 mission teams conducted a successful under-fly of Landsat 8 by Landsat 9, allowing for the near-simultaneous data collection of common Earth targets by the on-board sensors for cross-calibration. This effort, coordinated by the Landsat Calibration and Validation team, required contributions from various entities across National Aeronautics and Space Administration and U.S. Geological Survey such as Flight Dynamics, Systems, Mission Planning, and Flight Operations teams, beginning about 18 months prior to launch. Plans existed to allow this under-fly for any possible launch date of Landsat 9. This included 16 ascent plans and 16 data acquisition plans, one for every day of the Landsat orbital repeat period, with a minimum of 5 days of useful coverage overlap between the sensors. After the Landsat 9 launch, the plan executed, and led to the acquisition of over 2000 partial to full overlapping scene pairs. Although containing less than the expected number of scenes, this dataset was larger than previous Landsat mission under-fly efforts and more than sufficient for performing cross-calibration of the Landsat 8 and Landsat 9 sensors. The details of the planning process and execution of this under-fly are presented

    Landsat 9 Cross Calibration Under-Fly of Landsat 8: Planning, and Execution

    No full text
    During the early post-launch phase of the Landsat 9 mission, the Landsat 8 and 9 mission teams conducted a successful under-fly of Landsat 8 by Landsat 9, allowing for the near-simultaneous data collection of common Earth targets by the on-board sensors for cross-calibration. This effort, coordinated by the Landsat Calibration and Validation team, required contributions from various entities across National Aeronautics and Space Administration and U.S. Geological Survey such as Flight Dynamics, Systems, Mission Planning, and Flight Operations teams, beginning about 18 months prior to launch. Plans existed to allow this under-fly for any possible launch date of Landsat 9. This included 16 ascent plans and 16 data acquisition plans, one for every day of the Landsat orbital repeat period, with a minimum of 5 days of useful coverage overlap between the sensors. After the Landsat 9 launch, the plan executed, and led to the acquisition of over 2000 partial to full overlapping scene pairs. Although containing less than the expected number of scenes, this dataset was larger than previous Landsat mission under-fly efforts and more than sufficient for performing cross-calibration of the Landsat 8 and Landsat 9 sensors. The details of the planning process and execution of this under-fly are presented
    corecore