4 research outputs found

    1.4 GHz on the Fundamental Plane of Black Hole Activity

    Get PDF
    The fundamental plane of black hole activity is an empirical relationship between the OIII/X-ray luminosity depicting the accretion power, the radio luminosity as a probe of the instantaneous jet power and the mass of the black hole. For the first time, we use the 1.4 GHz FIRST radio luminosities on the optical fundamental plane, to investigate whether or not FIRST fluxes can trace nuclear activity. We use a SDSS-FIRST cross-correlated sample of 10149 active galaxies and analyse their positioning on the optical fundamental plane. We focus on various reasons that can cause the discrepancy between the observed FIRST radio fluxes and the theoretically expected core radio fluxes, and show that that FIRST fluxes are heavily contaminated by non-nuclear, extended components and other environmental factors. We show that the subsample of 'compact sources', which should have negligible lobe contribution, statistically follow the fundamental plane when corrected for relativistic beaming, while all the other sources lie above the plane. The sample of LINERs, which should have negligible lobe and beaming contribution, also follow the fundamental plane. A combined fit of the low-luminosity AGN and the X-ray binaries, with the LINERs, results in the relation log LR_R = 0.77 log LOIII_{OIII} + 0.69 log M. Assuming that the original fundamental plane relation is correct, we conclude that 1.4 GHz FIRST fluxes do not trace the pure 'core' jet and instantaneous nuclear activity in the AGN, and one needs to be careful while using it on the fundamental plane of black hole activity.Comment: 10 pages, 5 figures, accepted for publication by MNRA

    Using infrared/X-ray flare statistics to probe the emission regions near the event horizon of Sgr A*

    Get PDF
    The supermassive black hole at the centre of the Galaxy flares at least daily in the infrared (IR) and X-ray bands, yet the process driving these flares is still unknown. So far detailed analysis has only been performed on a few bright flares. In particular, the broadband spectral modelling suffers from a strong lack of simultaneous data. However, new monitoring campaigns now provide data on thousands of flaring events, allowing a statistical analysis of the flare properties. In this paper, we investigate the X-ray and IR flux distributions of the flare events. Using a self-consistent calculation of the particle distribution, we model the statistical properties of the flares. Based on a previous work on single flares, we consider two families of models: pure synchrotron models and synchrotron self-Compton (SSC) models. We investigate the effect of fluctuations in some relevant parameters (e.g. acceleration properties, density, magnetic field) on the flux distributions. The distribution of these parameters is readily derived from the flux distributions observed at different wavelengths. In both scenarios, we find that fluctuations of the power injected in accelerated particles plays a major role. This must be distributed as a power-law (with different indices in each model). In the synchrotron dominated scenario, we derive the most extreme values of the acceleration power required to reproduce the brightest flares. In that model, the distribution of the acceleration slope fluctuations is constrained and in the SSC scenario we constrain the distributions of the correlated magnetic field and flow density variations.Comment: 9 pages, 3 tables, 6 figures, MNRAS, June 201
    corecore