16,771 research outputs found
Climate change impacts on water for irrigated horticulture in the Vale of Evesham. Final Report
This project has undertaken a scoping review and assessment of the impacts of climate change on
irrigated horticulture in the Vale of Evesham, an area of intense irrigated production located within the
Environment Agency’s Warwickshire Avon CAMS Catchment. The research was based on a
combination of methodologies including desk-based review of published and grey literature, computer
agroclimatic and water balance modelling, GIS mapping, meetings with key informants and a
stakeholder workshop.
Future climate datasets were derived from the latest UK Climate Impacts Programme (UKICIP02)
climatology, using selected emission scenarios for the 2020s, 2050s and 2080s. These scenarios were
then used to model and map the future agroclimatic conditions under which agriculture might operate
and the consequent impacts on irrigation need (depths of water applied) and volumetric demand. This
was complimented by a postal survey to abstractors and a stakeholder workshop, to identify, review
and assess farmer adaptation options and responses. The key findings arising from the research,
implications for water resource management and recommendations for further work are summarised
below.
Using a geographical information system (GIS), a series of agroclimate maps have been produced, for
the baseline and selected UKCIP02 scenario. The maps show major changes in agroclimate within the
catchment over the next 50 years. The driest agroclimate zones are currently located around
Worcester, Evesham, Tewkesbury and Gloucester, corresponding to areas where horticultural
production and irrigation demand are most concentrated. By the 2020s, all agroclimate zones are
predicted to increase in aridity. By the 2050s the entire catchment is predicted to have a drier
agroclimate than is currently experienced anywhere in the driest parts of the catchment. This will have
major impacts on the pattern of land use and irrigation water demand. Cont/d
Length-weight relationships of coral reef fishes from the Alacran Reef, Yucatan, Mexico
Length-weight relationships were computed for 42 species of coral reef fishes from 14 families from the Alacran Reef (Yucatan, Mexico). A total of 1 892 individuals was used for this purpose. The fish species were caught by different fishing techniques such as fishhooks, harpoons, gill and trawl nets. The sampling period was from March 1998 to January 2000
Recommended from our members
Syndemics and the PrEP Cascade: Results from a Sample of Young Latino Men Who Have Sex with Men.
Young Latino men who have sex with men (MSM) are a highly vulnerable population for HIV infection. Pre-exposure prophylaxis (PrEP) is a novel biomedical HIV prevention tool that may aid in reducing the disparity in HIV incidence among Latino MSM. However, PrEP use is disproportionally low among Latino MSM and, therefore, identifying barriers along the PrEP continuum of care (the "PrEP cascade") would provide insight into how to best deploy PrEP interventions. Syndemics theory is a prominent framework employed in HIV prevention; however, to date, no known studies have applied this theory to PrEP. Thus, the aim of the current study was to explore the association between syndemics and the PrEP cascade, including the degree to which psychosocial and structural syndemic constructs are related to the PrEP cascade. Participants were 151 young Latino MSM (M age = 24 years; SD = 3) residing in San Diego, California, who completed a battery of online self-report measures. Results indicated high levels of syndemic indicators and varying levels of engagement across the PrEP cascade. As syndemic indicators increased, the odds of engagement across the PrEP cascade were significantly lowered. Psychosocial and structural syndemic factors accounted for unique variance in the PrEP cascade. Results highlight the need for combination interventions that address both psychosocial and structural barriers to PrEP use and persistence among young Latino MSM
Draft Genome Sequence of a Multi-Metal Resistant Bacterium Pseudomonas putida ATH-43 Isolated from Greenwich Island, Antarctica
Indexación: Web of Science; Scopus.In this report we present the first draft genome sequence of a P. putida strain isolated from the Antarctic continent. The shotgun sequencing strategy, assembly, and subsequent annotation showed that the ATH-43 strain possesses a wide spectrum of genetic determinants involved in heavy metal and antibiotic resistance, apparently to cope with extreme oxidative stress conditions. P. putida ATH-43 genome now forms part of the 65 genomes of this species registered at the NCBI database (September, 2016) and it is highly related with the endophytic strain P. putida W619, which is also resistant to several heavy metals. Further characterization of multi-metal resistant psychrotrophic bacteria such as P. putida ATH-43 will be promising to develop novel strategies for heavy metal bioremediation in low temperature environments. All genome data has been submitted to NCBI.http://journal.frontiersin.org/article/10.3389/fmicb.2016.01777/ful
Active galactic nuclei synapses: X-ray versus optical classifications using artificial neural networks
(Abridged) Many classes of active galactic nuclei (AGN) have been defined
entirely throughout optical wavelengths while the X-ray spectra have been very
useful to investigate their inner regions. However, optical and X-ray results
show many discrepancies that have not been fully understood yet. The aim of
this paper is to study the "synapses" between the X-ray and optical
classifications.
For the first time, the new EFLUXER task allowed us to analyse broad band
X-ray spectra of emission line nuclei (ELN) without any prior spectral fitting
using artificial neural networks (ANNs). Our sample comprises 162 XMM-Newton/pn
spectra of 90 local ELN in the Palomar sample. It includes starbursts (SB),
transition objects (T2), LINERs (L1.8 and L2), and Seyferts (S1, S1.8, and S2).
The ANNs are 90% efficient at classifying the trained classes S1, S1.8, and
SB. The S1 and S1.8 classes show a wide range of S1- and S1.8-like components.
We suggest that this is related to a large degree of obscuration at X-rays. The
S1, S1.8, S2, L1.8, L2/T2/SB-AGN (SB with indications of AGN), and SB classes
have similar average X-ray spectra within each class, but these average spectra
can be distinguished from class to class. The S2 (L1.8) class is linked to the
S1.8 (S1) class with larger SB-like component than the S1.8 (S1) class. The L2,
T2, and SB-AGN classes conform a class in the X-rays similar to the S2 class
albeit with larger fractions of SB-like component. This SB-like component is
the contribution of the star-formation in the host galaxy, which is large when
the AGN is weak. An AGN-like component seems to be present in the vast majority
of the ELN, attending to the non-negligible fraction of S1-like or S1.8-like
component. This trained ANN could be used to infer optical properties from
X-ray spectra in surveys like eRosita.Comment: 15 pages, 7 figures, accepted for publication in A&A. Appendix B only
in the full version of the paper here:
https://dl.dropboxusercontent.com/u/3484086/AGNSynapsis_OGM_online.pd
Effects of Schizochytrium microalgae and sunflower oil as sources of unsaturated fatty acids for the sustainable mitigation of ruminal biogases methane and carbon dioxide
Biogases produced during ruminant production needs to be reduced. The Food and Agriculture Organization (FAO) estimated CH4 production from livestock to contribute about 18% of all greenhouse gas emissions, while carbon dioxide (CO2) accounted for about 9% of the emission (FAO, 2006). Besides, these gases including CH4, CO2, and H2 are produced during ruminal fermentation and cause losses amounting to 2e12% of dietary energy in ruminants (Johnson and Johnson, 1995). Furthermore, these emissions have been implicated in causing climate change. Yeast, organic acids salt, exogenous enzymes, and essential oils have been used as new strategies to mitigate the production of ruminal methane from ruminants (Elghandour et al., 2016, 2017; Hernandez et al., 2017).Mitigation of methane (CH4) and carbon dioxide (CO2) emissions as well as ruminal fermentation parameters of a total mixed ration in the presence of Schizochytrium microalgae (SA) and sunflower oil (SO) or their mixture (SASO) as unsaturated fatty acid sources was investigated. Rumen liquor from two rumen cannulated Holstein steers and two rumen cannulated Creole goats was used as inoculum. Interactions between inoculum source additive type, and inoculum source additive type dose were observed for gas, CH4 and CO2 production and fermentation parameters. Additives affected the fermentation parameters in a dose-dependent manner. With goats’ inoculum, the inclusion of SO (1, 2, 4, 5%), SA (2, 3, 5%) and SASO (1, 3%) increased gas production (GP) and decreased the rate of GP, while with the steer inoculum, SO at 1 and 4% increased GP and the rate of GP. All levels of SA and SASO decreased the asymptotic GP and increased the rate of GP. The goat inoculum decreased CH4 at different doses of SO, SA and SASO whereas the steer inoculum decreased CH4 production. At all doses, additives decreased fermentation pH, protozoal counts, and increased ammonia-N, DM degradability and total bacterial counts. Sunflower oil (i.e., SO) at 1e3%, SA at 1e2%, and SASO at 1e2% were the most efficacious in the nutrition of goats, compared with SO at 1 to 2 in steers. The results suggest that Schizochytrium microalgae and sunflower oil could be a valuable means of sustainably mitigating CH4 and CO2 emissions for improved environmental conditions
Role of von Willebrand factor levels in the prognosis of stage IV colorectal cancer: do we have enough evidence?
- …
