37 research outputs found

    Influence of soil properties on Nâ‚‚O and COâ‚‚ emissions from excreta deposited on tropical pastures in Kenya

    Get PDF
    Urine and dung patches deposited by grazing cattle on grassland are an important source of nitrous oxide (N2O). While a number of studies have investigated the effects of excreta on soil N2O fluxes in developed economies and in China, observations in sub-Saharan Africa (SSA) are scarce. Moreover, the effects of soil properties (e.g. pH or texture) on N2O emissions from excreta patches have hardly been studied. In this study we investigated the importance of soil properties on N2O and carbon dioxide (CO2) emissions from cattle excreta (dung, urine, and manure [dung + urine]) for five typical tropical soils in Kenya. For this, intact soil cores were translocated from Western Kenya (Nandi county) to Nairobi, where N2O and CO2 fluxes were measured over four individual periods (two during dry seasons and two during wet seasons). Fluxes were measured for between 25 and 73 days following surface application of excreta, depending on how quickly emissions returned to baseline. Both dung and manure applications led to increased CO2 and N2O fluxes during both dry and wet seasons. On average, the N2O emission factor (EF) for manure was higher than for dung. The EFs during the wet season were higher for both the dung (0.12%) and urine (0.50%) compared to the dry season EFs (0.01% and 0.07% for dung and urine respectively). Soil type had no measurable effect on N2O and CO2 emissions for either dung or manure application. In contrast, soil clay content was negatively (P < 0.05) and pH positively (P < 0.05) correlated with N2O emissions after urine application. Assuming an excreta-N ratio of dung to urine of 66:34, as evidenced in earlier studies for SSA, and averaging across all treatments and soils, we calculated a cattle excreta N2O EF of 0.14%, which is one magnitude lower than the IPCC default N2O EF of 2%. Our results call for a revision of the IPCC guidelines for calculating N2O emissions from excreta deposition on tropical rangelands

    Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting

    Get PDF
    Nitrous oxide is a powerful greenhouse gas whose atmospheric growth rate has accelerated over the past decade. Most anthropogenic N2O emissions result from soil N fertilization, which is converted to N2O via oxic nitrification and anoxic denitrification pathways. Drought-affected soils are expected to be well oxygenated; however, using high-resolution isotopic measurements, we found that denitrifying pathways dominated N2O emissions during a severe drought applied to managed grassland. This was due to a reversible, drought-induced enrichment in nitrogen-bearing organic matter on soil microaggregates and suggested a strong role for chemo- or codenitrification. Throughout rewetting, denitrification dominated emissions, despite high variability in fluxes. Total N2O flux and denitrification contribution were significantly higher during rewetting than for control plots at the same soil moisture range. The observed feedbacks between precipitation changes induced by climate change and N2O emission pathways are sufficient to account for the accelerating N2O growth rate observed over the past decade

    Quantifying the contribution of land use to N2O, NO and CO2 fluxes in a montane forest ecosystem of Kenya

    Get PDF
    Increasing demand for food and fibre by the growing human population is driving significant land use (LU) change from forest into intensively managed land systems in tropical areas. But empirical evidence on the extent to which such changes affect the soil-atmosphere exchange of trace gases is still scarce, especially in Africa. We investigated the effect of LU on soil trace gas production in the Mau Forest Complex region, Kenya. Intact soil cores were taken from natural forest, commercial and smallholder tea plantations, eucalyptus plantations and grazing lands, and were incubated in the lab under different soil moisture conditions. Soil fluxes of nitrous oxide (N2O), nitric oxide (NO) and carbon dioxide (CO2) were quantified, and we approximated annual estimates of soil N2O and NO fluxes using soil moisture values measured in situ. Forest and eucalyptus plantations yielded annual fluxes of 0.3-1.3 kg N2O-N ha(-1) a(-1) and 1.5-5.2 kg NO-N ha(-1) a(-1). Soils of commercial tea plantations, which are highly fertilized, showed higher fluxes (0.9 kg N2O-N ha(-1) a(-1) and 4.3 kg NO-N ha(-1) a(-1)) than smallholder tea plantations (0.1 kg N2O-N ha(-1) a(-1) and 2.1 kg NO-N ha(-1) a(-1)) or grazing land (0.1 kg N2O-N ha(-1) a(-1) and 1.1 kg NO-N ha(-1) a(-1)). High soil NO fluxes were probably the consequence of long-term N fertilization and associated soil acidification, likely promoting chemodenitrification. Our experimental approach can be implemented in understudied regions, with the potential to increase the amount of information on production and consumption of trace gases from soils

    The ScaleX campaign: scale-crossing land-surface and boundary layer processes in the TERENO-preAlpine observatory

    Get PDF
    Augmenting long-term ecosystem-atmosphere observations with multidisciplinary intensive campaigns aims at closing gaps in spatial and temporal scales of observation for energy- and biogeochemical cycling, and at stimulating collaborative research. ScaleX is a collaborative measurement campaign, co-located with a long-term environmental observatory of the German TERENO (TERrestrial ENvironmental Observatories) network in mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land-surface atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated on a small number of locations

    Recycling nitrogen from liquid digestate via novel reactive struvite and zeolite minerals to mitigate agricultural pollution

    No full text
    Recycling nutrients is of paramount importance. For this reason, struvite and nitrogen enriched zeolite fertilizers produced from wastewater treatments are receiving growing attention in European markets. However, their effects on agricultural soils are far from certain, especially struvite, which only recently was implemented in EU Fertilizing Product Regulations. In this paper, we investigate the effects of these materials in acid sandy arable soil, particularly focusing on N dynamics, evaluating potential losses, transformation pathways, and the effects of struvite and zeolitic tuffs on main soil biogeochemical parameters, in comparison to traditional fertilization with digestate. Liming effect (pH alkalinization) was observed in all treatments with varying intensities, affecting most of the soil processes. The struvite was quickly solubilized due to soil acidity, and the release of nutrients stimulated nitrifying and denitrifying microorganisms. Zeolitic tuff amendments decreased the NOx gas emissions, which are precursors to the powerful climate altering N2O gas, and the N enriched chabazite tuff also recorded smaller NH3 emissions compared to the digestate. However, a high dosage of zeolites in soil increased NH3 emissions after fertilization, due to pronounced pH shifts. Contrasting effects were observed between the two zeolitic tuffs when applied as soil amendments; while the chabazite tuff had a strong positive effect - increasing up to ∼90% the soil microbial N immobilization - the employed clinoptilolite tuff had immediate negative effects on the microbial biomass, likely due to the large quantities of sulphur released. However, when applied at lower dosages, the N enriched clinoptilolite also contributed to the increase of microbial N. From these outcomes, we confirm the potential of struvite and zeolites to mitigate the outfluxes of nutrients from agricultural systems. To gain the best results and significantly lower environmental impacts, extension practitioners could give recommendations based on the soils that are planned for zeolite application
    corecore