17 research outputs found

    Glyceraldehyde-3-phosphate dehydrogenase is overexpressed in colorectal cancer onset

    Get PDF
    Background Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential regulator of glycolysis used as a housekeeping marker for gene/protein normalisation. Given the pivotal role of GAPDH in tumour metabolism, our aim was to correlate its protein expression with tumour staging and prognosis of colorectal cancer. Methods GAPDH expression was immunohistochemically analysed in tumour tissues from 62 colorectal cancer (CRC) patients, and validated at mRNA level in an independent dataset comprising 98 paired stage II CRC and normal samples. Staining quantification was performed by computational image analysis, and correlations between GAPDH expression and tumour progression stage were assessed. Gene expression profiling was performed using Affymetrix microarrays. Probability of patient survival and disease-free survival were analysed by the univariate product-limit method of Kaplan-Meier. Groups were compared using Kruskal-Wallis tests. Results Overexpression of GAPDH is positively associated with early stage tumours without regional lymph node and distant metastases involved. These results were reinforced by those obtained at mRNA level. Conclusion Studying the role of GAPDH in malignant transformation can shed new light on the understanding of tumour onset and lead to the design of more efficient personalised therapies

    Transketolase-Like 1 Expression Is Modulated during Colorectal Cancer Progression and Metastasis Formation

    Get PDF
    Background Transketolase-like 1 (TKTL1) induces glucose degradation through anaerobic pathways, even in presence of oxygen, favoring the malignant aerobic glycolytic phenotype characteristic of tumor cells. As TKTL1 appears to be a valid biomarker for cancer prognosis, the aim of the current study was to correlate its expression with tumor stage, probability of tumor recurrence and survival, in a series of colorectal cancer patients. Methodolody/Principal Findings Tumor tissues from 63 patients diagnosed with colorectal cancer at different stages of progression were analyzed for TKTL1 by immunohistochemistry. Staining was quantified by computational image analysis, and correlations between enzyme expression, local growth, lymph-node involvement and metastasis were assessed. The highest values for TKTL1 expression were detected in the group of stage III tumors, which showed significant differences from the other groups (Kruskal-Wallis test, P = 0.000008). Deeper analyses of T, N and M classifications revealed a weak correlation between local tumor growth and enzyme expression (Mann-Whitney test, P = 0.029), a significant association of the enzyme expression with lymph-node involvement (Mann-Whitney test, P = 0.0014) and a significant decrease in TKTL1 expression associated with metastasis (Mann-Whitney test, P = 0.0004). Conclusions/Significance To our knowledge, few studies have explored the association between variations in TKTL1 expression in the primary tumor and metastasis formation. Here we report downregulation of enzyme expression when metastasis appears, and a correlation between enzyme expression and regional lymph-node involvement in colon cancer. This finding may improve our understanding of metastasis and lead to new and more efficient therapies against cancer

    A key role for transketolase-like 1 in tumor metabolic reprogramming

    No full text
    Metabolic reprogramming, a crucial cancer hallmark, shifts metabolic pathways such as glycolysis, tricarboxylic acid cycle or lipogenesis, to enable the growth characteristics of cancer cells. Here, we provide evidence that transketolase-like 1 (TKTL1) orchestrates aerobic glycolysis, fatty acid and nucleic acid synthesis, glutamine metabolism, protection against oxidative stress and cell proliferation. Furthermore, silencing of TKTL1 reduced the levels of sphingolipids such as lactosylceramide (a sphingolipid regulating cell survival, proliferation and angiogenesis) and phosphatidylinositol (which activates PI3K/Akt/mTOR signaling). Thus, in addition to its well-known roles in glucose and amino acid metabolism, TKTL1 also regulates lipid metabolism. In conclusion, our study provides unprecedented evidence that TKTL1 plays central roles in major metabolic processes subject to reprogramming in cancer cells and thus identifies TKTL1 as a promising target for new anti-cancer therapies.This work was supported by grants to M.C. (Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) – Generalitat de Catalunya, 2014SGR1017; ICREA Academia from the ICREA foundation; and MINECO-European Commission FEDER – Una manera de hacer Europa, SAF2014-56059-R), T.M.T. (MINECO-European Commission FEDER – Una manera de hacer Europa, SAF2015-66984-C2-1-R; and Xarxa de Referència en Biotecnologia) and P.C. (Research Foundation-Flanders (FWO), Belgian Science Policy grant (IUAP P7/03); long-term structural Methusalem funding by the Flemish Government; European Research Council (ERC) Advanced Research Grant (EU-ERC269073); and AXA Research Fund).Peer Reviewe

    Target metabolomics revealed complementary roles of hexose- and pentose-phosphates in the regulation of carbohydrate-dependent gene expression

    No full text
    Carbohydrate response element-binding protein (ChREBP) is a transcription factor that mediates glucose signaling in mammalian liver, leading to the expression of different glycolytic and lipogenic genes, such as pyruvate kinase (L-PK) and fatty acid synthase (FAS). The current model for ChREBP activation in response to sugar phosphates holds that glucose metabolization to xylulose 5-phosphate (X-5-P) triggers the activation of protein phosphatase 2A, which dephosphorylates ChREBP and leads to its nuclear translocation and activation. However, evidence indicates that glucose 6-phosphate (G-6-P) is the most likely signal metabolite for the glucose-induced transcription of these genes. The glucose derivative that is responsible for carbohydrate-dependent gene expression remains to be identified. The difficulties in measuring G-6-P and X-5-P concentrations simultaneously and in changing them independently have hindered such identification. To discriminate between these possibilities, we adapted a liquid chromatography mass spectrometry method to identify and quantify sugar phosphates in human hepatocarcinoma cells (Hep G2) and rat hepatocytes in response to different carbon sources and in the presence/absence of a glucose-6-phosphate dehydrogenase inhibitor. We also used this method to demonstrate that these cells could not metabolize 2-deoxyglucose beyond 2-deoxyglucose-6-phosphate. The simultaneous quantification of sugar phosphates and FAS and L-PK expression levels demonstrated that both X-5-P and G-6-P play a role in the modulation of gene expression. In conclusion, this report presents for the first time a single mechanism that incorporates the effects of X-5-P and G-6-P on the enhancement of the expression of carbohydrate-responsive genes. © 2012 the American Physiological Society.This study was supported by the projects SAF2009-12602 and SAF2011-25726 and by RD06/0020/0046 and RD06/0014/0025 from Red Temática de Investigación Cooperativa en Cáncer and Red de Centros FIS-RECAVA, respectively, from the Instituto de Salud Carlos III, both funded by the Ministerio de Ciencia e Innovación-Spanish government and European Regional Development Funds “Una manera de hacer Europa.” It has also received financial support from the European Union-funded project ETHERPATHS (FP7-KBBE-222639) (http://www.etherpaths.org/) and from the Agència de Gestió d'Ajuts Universitaris i de Recerca-Generalitat de Catalunya (2009SGR01308, 2006ITT-10007, and 2009CTP-00026).Peer Reviewe

    Transketolase-like 1 expression is modulated during Colorectal cancer progression and metastasis formation

    No full text
    Background Transketolase-like 1 (TKTL1) induces glucose degradation through anaerobic pathways, even in presence of oxygen, favoring the malignant aerobic glycolytic phenotype characteristic of tumor cells. As TKTL1 appears to be a valid biomarker for cancer prognosis, the aim of the current study was to correlate its expression with tumor stage, probability of tumor recurrence and survival, in a series of colorectal cancer patients. Methodolody/Principal Findings Tumor tissues from 63 patients diagnosed with colorectal cancer at different stages of progression were analyzed for TKTL1 by immunohistochemistry. Staining was quantified by computational image analysis, and correlations between enzyme expression, local growth, lymph-node involvement and metastasis were assessed. The highest values for TKTL1 expression were detected in the group of stage III tumors, which showed significant differences from the other groups (Kruskal-Wallis test, P = 0.000008). Deeper analyses of T, N and M classifications revealed a weak correlation between local tumor growth and enzyme expression (Mann-Whitney test, P = 0.029), a significant association of the enzyme expression with lymph-node involvement (Mann-Whitney test, P = 0.0014) and a significant decrease in TKTL1 expression associated with metastasis (Mann-Whitney test, P = 0.0004). Conclusions/Significance To our knowledge, few studies have explored the association between variations in TKTL1 expression in the primary tumor and metastasis formation. Here we report downregulation of enzyme expression when metastasis appears, and a correlation between enzyme expression and regional lymph-node involvement in colon cancer. This finding may improve our understanding of metastasis and lead to new and more efficient therapies against cancer

    Glyceraldehyde-3-phosphate dehydrogenase is overexpressed in colorectal cancer onset

    No full text
    Abstract Background Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential regulator of glycolysis used as a housekeeping marker for gene/protein normalisation. Given the pivotal role of GAPDH in tumour metabolism, our aim was to correlate its protein expression with tumour staging and prognosis of colorectal cancer. Methods GAPDH expression was immunohistochemically analysed in tumour tissues from 62 colorectal cancer (CRC) patients, and validated at mRNA level in an independent dataset comprising 98 paired stage II CRC and normal samples. Staining quantification was performed by computational image analysis, and correlations between GAPDH expression and tumour progression stage were assessed. Gene expression profiling was performed using Affymetrix microarrays. Probability of patient survival and disease-free survival were analysed by the univariate product-limit method of Kaplan-Meier. Groups were compared using Kruskal-Wallis tests. Results Overexpression of GAPDH is positively associated with early stage tumours without regional lymph node and distant metastases involved. These results were reinforced by those obtained at mRNA level. Conclusion Studying the role of GAPDH in malignant transformation can shed new light on the understanding of tumour onset and lead to the design of more efficient personalised therapies

    Maslinic acid-enriched diet decreases intestinal tumorigenesis in ApcMin/+ mice through transcriptomic and metabolomic reprogramming

    Get PDF
    Chemoprevention is a pragmatic approach to reduce the risk of colorectal cancer, one of the leading causes of cancerrelated death in western countries. In this regard, maslinic acid (MA), a pentacyclic triterpene extracted from wax-like coatings of olives, is known to inhibit proliferation and induce apoptosis in colon cancer cell lines without affecting normal intestinal cells. The present study evaluated the chemopreventive efficacy and associated mechanisms of maslinic acid treatment on spontaneous intestinal tumorigenesis in ApcMin/+ mice. Twenty-two mice were randomized into 2 groups: control group and MA group, fed with a maslinic acid-supplemented diet for six weeks. MA treatment reduced total intestinal polyp formation by 45% (P,0.01). Putative molecular mechanisms associated with suppressing intestinal polyposis in ApcMin/+ mice were investigated by comparing microarray expression profiles of MA-treated and control mice and by analyzing the serum metabolic profile using NMR techniques. The different expression phenotype induced by MA suggested that it exerts its chemopreventive action mainly by inhibiting cell-survival signaling and inflammation. These changes eventually induce G1-phase cell cycle arrest and apoptosis. Moreover, the metabolic changes induced by MA treatment were associated with a protective profile against intestinal tumorigenesis. These results show the efficacy and underlying mechanisms of MA against intestinal tumor development in the ApcMin/+ mice model, suggesting its chemopreventive potential against colorectal cancer

    Glyceraldehyde-3-phosphate dehydrogenase is overexpressed in colorectal cancer onset

    No full text
    Background Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential regulator of glycolysis used as a housekeeping marker for gene/protein normalisation. Given the pivotal role of GAPDH in tumour metabolism, our aim was to correlate its protein expression with tumour staging and prognosis of colorectal cancer. Methods GAPDH expression was immunohistochemically analysed in tumour tissues from 62 colorectal cancer (CRC) patients, and validated at mRNA level in an independent dataset comprising 98 paired stage II CRC and normal samples. Staining quantification was performed by computational image analysis, and correlations between GAPDH expression and tumour progression stage were assessed. Gene expression profiling was performed using Affymetrix microarrays. Probability of patient survival and disease-free survival were analysed by the univariate product-limit method of Kaplan-Meier. Groups were compared using Kruskal-Wallis tests. Results Overexpression of GAPDH is positively associated with early stage tumours without regional lymph node and distant metastases involved. These results were reinforced by those obtained at mRNA level. Conclusion Studying the role of GAPDH in malignant transformation can shed new light on the understanding of tumour onset and lead to the design of more efficient personalised therapies

    Additional file 3: Table S1. of Glyceraldehyde-3-phosphate dehydrogenase is overexpressed in colorectal cancer onset

    No full text
    Clinicopathological and immunohistochemical data. Id, arbitrary number used to preserve the privacy of patients; a.u., arbitrary units; M, male; F, female; TNM staging system: T, primary tumour extent; N, regional lymph node involvement; M, absence or presence of distant metastasis. (PDF 547 kb
    corecore