111 research outputs found

    Bordetella pertussis, the Causative Agent of Whooping Cough, Evolved from a Distinct, Human-Associated Lineage of B. bronchiseptica

    Get PDF
    Bordetella pertussis, B. bronchiseptica, B. parapertussis(hu), and B. parapertussis(ov) are closely related respiratory pathogens that infect mammalian species. B. pertussis and B. parapertussis(hu) are exclusively human pathogens and cause whooping cough, or pertussis, a disease that has resurged despite vaccination. Although it most often infects animals, infrequently B. bronchiseptica is isolated from humans, and these infections are thought to be zoonotic. B. pertussis and B. parapertussis(hu) are assumed to have evolved from a B. bronchiseptica–like ancestor independently. To determine the phylogenetic relationships among these species, housekeeping and virulence genes were sequenced, comparative genomic hybridizations were performed using DNA microarrays, and the distribution of insertion sequence elements was determined, using a collection of 132 strains. This multifaceted approach distinguished four complexes, representing B. pertussis, B. parapertussis(hu), and two distinct B. bronchiseptica subpopulations, designated complexes I and IV. Of the two B. bronchiseptica complexes, complex IV was more closely related to B. pertussis. Of interest, while only 32% of the complex I strains were isolated from humans, 80% of the complex IV strains were human isolates. Comparative genomic hybridization analysis identified the absence of the pertussis toxin locus and dermonecrotic toxin gene, as well as a polymorphic lipopolysaccharide biosynthesis locus, as associated with adaptation of complex IV strains to the human host. Lipopolysaccharide structural diversity among these strains was confirmed by gel electrophoresis. Thus, complex IV strains may comprise a human-associated lineage of B. bronchiseptica from which B. pertussis evolved. These findings will facilitate the study of pathogen host-adaptation. Our results shed light on the origins of the disease pertussis and suggest that the association of B. pertussis with humans may be more ancient than previously assumed

    The vaccine potential of Bordetella pertussis biofilm-derived membrane proteins

    Get PDF
    Pertussis is an infectious respiratory disease of humans caused by the gram-negative pathogen Bordetella pertussis. The use of acellular pertussis vaccines (aPs) which induce immunity of relative short duration and the emergence of vaccine-adapted strains are thought to have contributed to the recent resurgence of pertussis in industrialized countries despite high vaccination coverage. Current pertussis vaccines consist of antigens derived from planktonic bacterial cultures. However, recent studies have shown that biofilm formation represents an important aspect of B. pertussis infection, and antigens expressed during this stage may therefore be potential targets for vaccination. Here we provide evidence that vaccination of mice with B. pertussis biofilm-derived membrane proteins protects against infection. Subsequent proteomic analysis of the protein content of biofilm and planktonic cultures yielded 11 proteins which were ≥ three-fold more abundant in biofilms, of which Bordetella intermediate protein A (BipA) was the most abundant, surface-exposed protein. As proof of concept, mice were vaccinated with recombinantly produced BipA. Immunization significantly reduced colonization of the lungs and antibodies to BipA were found to efficiently opsonize bacteria. Finally, we confirmed that bipA is expressed during respiratory tract infection of mice, and that anti-BipA antibodies are present in the serum of convalescent whooping cough patients. Together, these data suggest that biofilm proteins and in particular BipA may be of interest for inclusion into future pertussis vaccines.Facultad de Ciencias ExactasCentro de Investigación y Desarrollo en Fermentaciones Industriale

    The vaccine potential of Bordetella pertussis biofilm-derived membrane proteins

    Get PDF
    Pertussis is an infectious respiratory disease of humans caused by the gram-negative pathogen Bordetella pertussis. The use of acellular pertussis vaccines (aPs) which induce immunity of relative short duration and the emergence of vaccine-adapted strains are thought to have contributed to the recent resurgence of pertussis in industrialized countries despite high vaccination coverage. Current pertussis vaccines consist of antigens derived from planktonic bacterial cultures. However, recent studies have shown that biofilm formation represents an important aspect of B. pertussis infection, and antigens expressed during this stage may therefore be potential targets for vaccination. Here we provide evidence that vaccination of mice with B. pertussis biofilm-derived membrane proteins protects against infection. Subsequent proteomic analysis of the protein content of biofilm and planktonic cultures yielded 11 proteins which were ≥ three-fold more abundant in biofilms, of which Bordetella intermediate protein A (BipA) was the most abundant, surface-exposed protein. As proof of concept, mice were vaccinated with recombinantly produced BipA. Immunization significantly reduced colonization of the lungs and antibodies to BipA were found to efficiently opsonize bacteria. Finally, we confirmed that bipA is expressed during respiratory tract infection of mice, and that anti-BipA antibodies are present in the serum of convalescent whooping cough patients. Together, these data suggest that biofilm proteins and in particular BipA may be of interest for inclusion into future pertussis vaccines.Facultad de Ciencias ExactasCentro de Investigación y Desarrollo en Fermentaciones Industriale

    Correction: Comparative genomic profiling of Dutch clinical Bordetella pertussis isolates using DNA microarrays: identification of genes absent from epidemic strains

    Get PDF
    <p><b>Copyright information:</b></p><p>Taken from "Comparative genomic profiling of Dutch clinical isolates using DNA microarrays: Identification of genes absent from epidemic strains"</p><p>http://www.biomedcentral.com/1471-2164/9/311</p><p>BMC Genomics 2008;9():311-311.</p><p>Published online 30 Jun 2008</p><p>PMCID:PMC2481270.</p><p></p

    Modification of innate immune responses to Bordetella pertussis in babies from pertussis vaccinated pregnancies

    Get PDF
    BACKGROUND: Tetanus, diphtheria, acellular pertussis, inactivated polio (Tdap-IPV) vaccines administered during pregnancy protect young infants from Bordetella pertussis (B. pertussis) infection. Whilst the impact of maternal Tdap-IPV vaccination on infants' humoral response to subsequent pertussis immunisation has been investigated, little is known about any impact on innate responses. METHODS: We investigated the immune response to B. pertussis in mothers and infants from Tdap-IPV-vaccinated and unvaccinated pregnancies, utilising a whole blood assay and flow cytometric phenotyping of neonatal natural killer (NK) cells, monocytes and dendritic cells. Blood was collected from mother and umbilical cord at birth, and from infants at seven weeks (one week pre-primary pertussis immunisation) and five months of age (one month post-primary pertussis immunisation). 21 mothers and 67 infants were studied. FINDINGS: Vaccinated women had elevated pro-inflammatory cytokine responses to B. pertussis. At birth, babies of vaccinated women had elevated IL-2 and IL-12 responses, elevated classical monocyte proportions, and reduced monocyte and NK cell cytokine responses. The elevated IL-2 response persisted to seven weeks-of-age, when lower IL-10 and IL-13 responses were also seen. One-month post-primary pertussis vaccination, infants from vaccinated pregnancies still had lower IL-10 responses to B. pertussis, as well as lower IL-4. INTERPRETATION: This study suggests that pertussis vaccination during pregnancy impacts infant cellular immune responses, potentially contributing to the modification of antibody responses already reported following primary immunisation against B. pertussis. FUNDING: National Institute for Health Research Imperial Biomedical Research Centre and IMmunising PRegnant women and INfants neTwork (funded by the GCRF Networks in Vaccines R&D)

    «Високе» і «низьке» у творчості народній і писемній

    Get PDF
    «The high» and «the low», – these categories can be examined and as mythical, as poetic image of space, as metaphorical recreation of human fate, as a public vertical line of human possibilities, as the valued step at the analysis of artistic styles and at the same time as violation of such evaluation. All these aspects adds to the theme as as an object of attention in the article; the relations of «high» and «low» culture, culture folk comes forward and «lordly» in the past centuries. Categories highly/low, higher/below are examined in various scientific studios – mythological, culturological, sociological, from the point of view of theory of literature, in historical and literary measuring.Visoko i nisko, gore i dolje može se promatrati kao mitološko značenje, kao poetska vizija prostora, kao metafora ljudske sudbine, kao društvena vertikala moći, kao vrijednosna ljestvica književnih stilova, kao narušavanje takvoga vrednovanja. Sve su to tek dopune temi kojom se želimo baviti. Zanimljivi su za nas odnosi visoke i niske kulture (prvenstveno verbalne, književne), kulture pučke i gospodske u proteklim stoljećima. Pojmovi se visoko/nisko, gore/dol

    Development of endotoxin tolerance does not influence the response to a challenge with the mucosal live-attenuated influenza vaccine in humans in vivo

    Get PDF
    Introduction: The effects of bacterial infections on the response to subsequent viral infections are largely unknown. This is important to elucidate to increase insight into the pathophysiology of bacterial and viral co-infections, and to assess whether bacterial infections may influence the course of viral infections. Methods: Healthy male subjects received either bacterial endotoxin [Escherichia coli-derived lipopolysaccharide (LPS), 2 ng/kg, n = 15] or placebo (n = 15) intravenously, followed by intranasal Fluenz (live-attenuated influenza vaccine) 1 week later. Results: LPS administration resulted in increased plasma cytokine levels and development of endotoxin tolerance in vivo and ex vivo, illustrated by attenuated cytokine production upon rechallenge with LPS. Following Fluenz administration, infectivity for the Fluenz A/B strains was similar between the LPS-Fluenz and placebo-Fluenz groups (13/15 subjects in both groups). Also, the Fluenz-induced increase in temperature and IL-6, G-CSF and IP-10 concentrations in nasal wash were similar between both groups. Conclusion: While endotoxemia profoundly attenuates the immune response upon a second LPS challenge, it does not influence the Fluenz-induced immune response. These results suggest immune suppression after bacterial infection does not alter the response to a subsequent viral infection
    corecore