5,494 research outputs found
A New Method of the Corotation Radius Evaluation in our Galaxy
We propose a new method for determination of the rotation velocity of the
galactic spiral density waves, correspondingly, the corotation radius, ,
in our Galaxy by means of statistical analysis of radial oxygen distribution in
the galactic disc derived over Cepheids. The corotation resonance happens to be
located at kpc, depending on the rate of gas infall on to
the galactic disc, the statistical error being kpc.
Simultaneously, the constant for the rate of oxygen synthesis in the galactic
disc was determined.
We also argue in favour of a very short time-scale formation of the galactic
disc, namely: Gyr. This scenario enables to solve the problem of
the lack of intergalactic gas infall.Comment: 5 pages, 5 figure, 1 tabl
Incremental bounded model checking for embedded software
Program analysis is on the brink of mainstream usage in embedded systems development. Formal verification of behavioural requirements, finding runtime errors and test case generation are some of the most common applications of automated verification tools based on bounded model checking (BMC). Existing industrial tools for embedded software use an off-the-shelf bounded model checker and apply it iteratively to verify the program with an increasing number of unwindings. This approach unnecessarily wastes time repeating work that has already been done and fails to exploit the power of incremental SAT solving. This article reports on the extension of the software model checker CBMC to support incremental BMC and its successful integration with the industrial embedded software verification tool BTC EMBEDDED TESTER. We present an extensive evaluation over large industrial embedded programs, mainly from the automotive industry. We show that incremental BMC cuts runtimes by one order of magnitude in comparison to the standard non-incremental approach, enabling the application of formal verification to large and complex embedded software. We furthermore report promising results on analysing programs with arbitrary loop structure using incremental BMC, demonstrating its applicability and potential to verify general software beyond the embedded domain
Dynamical Breakdown of Symmetry in a (2+1) Dimensional Model Containing the Chern-Simons Field
We study the vacuum stability of a model of massless scalar and fermionic
fields minimally coupled to a Chern-Simons field. The classical Lagrangian only
involves dimensionless parameters, and the model can be thought as a (2+1)
dimensional analog of the Coleman-Weinberg model. By calculating the effective
potential, we show that dynamical symmetry breakdown occurs in the two-loop
approximation. The vacuum becomes asymmetric and mass generation, for the boson
and fermion fields takes place. Renormalization group arguments are used to
clarify some aspects of the solution.Comment: Minor modifications in the text and figure
Optimal bispectrum constraints on single-field models of inflation
We use WMAP 9-year bispectrum data to constrain the free parameters of an 'effective field theory' describing fluctuations in single-field inflation. The Lagrangian of the theory contains a finite number of operators associated with unknown mass scales. Each operator produces a fixed bispectrum shape, which we decompose into partial waves in order to construct a likelihood function. Based on this likelihood we are able to constrain four linearly independent combinations of the mass scales. As an example of our framework we specialize our results to the case of 'Dirac-Born-Infeld' and 'ghost' inflation and obtain the posterior probability for each model, which in Bayesian schemes is a useful tool for model comparison. Our results suggest that DBI-like models with two or more free parameters are disfavoured by the data by comparison with single parameter models in the same class
Molecular cloning and characterization of a highly selective chemokine-binding protein from the tick Rhipicephalus sanguineus.
Abstract Ticks are blood-feeding parasites that secrete a number of immuno-modulatory factors to evade the host immune response. Saliva isolated from different species of ticks has recently been shown to contain chemokine neutralizing activity. To characterize this activity, we constructed a cDNA library from the salivary glands of the common brown dog tick, Rhipicephalus sanguineus. Pools of cDNA clones from the library were transfected into HEK293 cells, and the conditioned media from the transfected cells were tested for chemokine binding activity by chemical cross-linking to radiolabeled CCL3 followed by SDS-PAGE. By de-convolution of a single positive pool of 270 clones, we identified a full-length cDNA encoding a protein of 114 amino acids, which after signal peptide cleavage was predicted to yield a mature protein of 94 amino acids that we called Evasin-1. Recombinant Evasin-1 was produced in HEK293 cells and in insect cells. Using surface plasmon resonance we were able to show that Evasin-1 was exquisitely selective for 3 CC chemokines, CCL3 and CCL4 and the closely related chemokine CCL18, with KD values of 0.16, 0.81, and 3.21 nm, respectively. The affinities for CCL3 and CCL4 were confirmed in competition receptor binding assays. Analysis by size exclusion chromatography demonstrated that Evasin-1 was monomeric and formed a 1:1 complex with CCL3. Thus, unlike the other chemokine-binding proteins identified to date from viruses and from the parasitic worm Schistosoma mansoni, Evasin-1 is highly specific for a subgroup of CC chemokines, which may reflect a specific role for these chemokines in host defense against parasites
An instability of higher-dimensional rotating black holes
We present the first example of a linearized gravitational instability of an
asymptotically flat vacuum black hole. We study perturbations of a Myers-Perry
black hole with equal angular momenta in an odd number of dimensions. We find
no evidence of any instability in five or seven dimensions, but in nine
dimensions, for sufficiently rapid rotation, we find perturbations that grow
exponentially in time. The onset of instability is associated with the
appearance of time-independent perturbations which generically break all but
one of the rotational symmetries. This is interpreted as evidence for the
existence of a new 70-parameter family of black hole solutions with only a
single rotational symmetry. We also present results for the Gregory-Laflamme
instability of rotating black strings, demonstrating that rotation makes black
strings more unstable.Comment: 38 pages, 13 figure
Analytic models and forward scattering from accelerator to cosmic-ray energies
Analytic models for hadron-hadron scattering are characterized by analytical
parametrizations for the forward amplitudes and the use of dispersion relation
techniques to study the total cross section and the
parameter. In this paper we investigate four aspects related to the application
of the model to and scattering, from accelerator to cosmic-ray
energies: 1) the effect of different estimations for from
cosmic-ray experiments; 2) the differences between individual and global
(simultaneous) fits to and ; 3) the role of the
subtraction constant in the dispersion relations; 4) the effect of distinct
asymptotic inputs from different analytic models. This is done by using as a
framework the single Pomeron and the maximal Odderon parametrizations for the
total cross section. Our main conclusions are the following: 1) Despite the
small influence from different cosmic-ray estimations, the results allow us to
extract an upper bound for the soft pomeron intercept: ;
2) although global fits present good statistical results, in general, this
procedure constrains the rise of ; 3) the subtraction constant as
a free parameter affects the fit results at both low and high energies; 4)
independently of the cosmic-ray information used and the subtraction constant,
global fits with the odderon parametrization predict that, above GeV, becomes greater than , and
this result is in complete agreement with all the data presently available. In
particular, we infer at GeV and
at 500 GeV (BNL RHIC energies).Comment: 16 pages, 7 figures, aps-revtex, wording changes, corrected typos, to
appear in Physical Review
Electric-octupole and pure-electric-quadrupole effects in soft-x-ray photoemission
Second-order [O(k^2), k=omega/c] nondipole effects in soft-x-ray
photoemission are demonstrated via an experimental and theoretical study of
angular distributions of neon valence photoelectrons in the 100--1200 eV
photon-energy range. A newly derived theoretical expression for nondipolar
angular distributions characterizes the second-order effects using four new
parameters with primary contributions from pure-quadrupole and octupole-dipole
interference terms. Independent-particle calculations of these parameters
account for a significant portion of the existing discrepancy between
experiment and theory for Ne 2p first-order nondipole parameters.Comment: 4 pages, 3 figure
A geometrical estimation of saturation of partonic densities
We propose a new criterium for saturation of the density of partons both in
nucleons and nuclei. It is applicable to any multiple scattering model which
would be used to compute the number of strings exchanged in and
collisions. The criterium is based on percolation of strings, and the onset of
percolation is estimated from expectations coming from the study of heavy ion
collisions at high energies. We interpret this onset as an indication of
saturation of the density of partons in the wave function of the hadron. In
order to produce quantitative results, a particular model fitted to describe
present HERA data and generalized to the nuclear case is used. Nevertheless,
with the number of scatterings controlled by the relation between inclusive and
diffractive processes, conclusions are weakly model-dependent as long as
different models are tuned to describe the experimental data. This constitutes
a new approach, based on the eikonal description of soft hadronic collisions,
and different from others which employ either perturbative QCD ideas or
semiclassical methods. It offers an alternative picture for saturation in the
small region.Comment: LaTeX, 15 pages, 2 eps figures included using epsfig; final version,
abstract and discussions enlarged, references added and updated, results
unchanged; more references adde
BAZ1B in Nucleus Accumbens Regulates Reward-Related Behaviors in Response to Distinct Emotional Stimuli
ATP-dependent chromatin remodeling proteins are being implicated increasingly in the regulation of complex behaviors, including models of several psychiatric disorders. Here, we demonstrate that Baz1b, an accessory subunit of the ISWI family of chromatin remodeling complexes, is upregulated in the nucleus accumbens (NAc), a key brain reward region, in both chronic cocaine-treated mice and mice that are resilient to chronic social defeat stress. In contrast, no regulation is seen in mice that are susceptible to this chronic stress. Viral-mediated overexpression of Baz1b, along with its associated subunit Smarca5, in mouse NAc is sufficient to potentiate both rewarding responses to cocaine, including cocaine self-administration, and resilience to chronic social defeat stress. However, despite these similar, proreward behavioral effects, genome-wide mapping of BAZ1B in NAc revealed mostly distinct subsets of genes regulated by these chromatin remodeling proteins after chronic exposure to either cocaine or social stress. Together, these findings suggest important roles for BAZ1B and its associated chromatin remodeling complexes in NAc in the regulation of reward behaviors to distinct emotional stimuli and highlight the stimulus-specific nature of the actions of these regulatory proteins
- âŠ