38 research outputs found

    Diffusion Coefficients, Short-Term Cosmic Ray Modulation, and Convected Magnetic Structures

    Get PDF
    Three cases of large-amplitude, small spatial-scale interplanetary particle gradients observed by the anticoincidence shield (ACS) aboard the INTEGRAL spacecraft in 2006 are investigated. The high data rates provided by the INTEGRAL ACS allow an unprecedented ability to probe the fine structure of GCR propagation in the inner Heliosphere. For two of the three cases, calculating perpendicular and parallel cosmic ray diffusion coefficients based on both field and particle data results in parallel diffusion appearing to satisfy a convection gradient current balance, provided that the magnetic scattering of the particles can be described by quasi-linear theory. In the third case, perpendicular diffusion seems to dominate. The likelihood of magnetic flux rope topologies within solar ejecta affecting the local modulation is considered, and its importance in understanding the field-particle interaction for the astrophysics of nonthermal particle phenomena is discussed

    Defining and distinguishing infant behavioral states using acoustic cry analysis: is colic painful?

    Get PDF
    BackgroundTo characterize acoustic features of an infant's cry and use machine learning to provide an objective measurement of behavioral state in a cry-translator. To apply the cry-translation algorithm to colic hypothesizing that these cries sound painful.MethodsAssessment of 1000 cries in a mobile app (ChatterBabyTM). Training a cry-translation algorithm by evaluating >6000 acoustic features to predict whether infant cry was due to a pain (vaccinations, ear-piercings), fussy, or hunger states. Using the algorithm to predict the behavioral state of infants with reported colic.ResultsThe cry-translation algorithm was 90.7% accurate for identifying pain cries, and achieved 71.5% accuracy in discriminating cries from fussiness, hunger, or pain. The ChatterBaby cry-translation algorithm overwhelmingly predicted that colic cries were most likely from pain, compared to fussy and hungry states. Colic cries had average pain ratings of 73%, significantly greater than the pain measurements found in fussiness and hunger (p < 0.001, 2-sample t test). Colic cries outranked pain cries by measures of acoustic intensity, including energy, length of voiced periods, and fundamental frequency/pitch, while fussy and hungry cries showed reduced intensity measures compared to pain and colic.ConclusionsAcoustic features of cries are consistent across a diverse infant population and can be utilized as objective markers of pain, hunger, and fussiness. The ChatterBaby algorithm detected significant acoustic similarities between colic and painful cries, suggesting that they may share a neuronal pathway

    Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides with experiment and theory

    Get PDF
    Chalcogen vacancies are considered to be the most abundant point defects in two-dimensional (2D) transition-metal dichalcogenide (TMD) semiconductors, and predicted to result in deep in-gap states (IGS). As a result, important features in the optical response of 2D-TMDs have typically been attributed to chalcogen vacancies, with indirect support from Transmission Electron Microscopy (TEM) and Scanning Tunneling Microscopy (STM) images. However, TEM imaging measurements do not provide direct access to the electronic structure of individual defects; and while Scanning Tunneling Spectroscopy (STS) is a direct probe of local electronic structure, the interpretation of the chemical nature of atomically-resolved STM images of point defects in 2D-TMDs can be ambiguous. As a result, the assignment of point defects as vacancies or substitutional atoms of different kinds in 2D-TMDs, and their influence on their electronic properties, has been inconsistent and lacks consensus. Here, we combine low-temperature non-contact atomic force microscopy (nc-AFM), STS, and state-of-the-art ab initio density functional theory (DFT) and GW calculations to determine both the structure and electronic properties of the most abundant individual chalcogen-site defects common to 2D-TMDs. Surprisingly, we observe no IGS for any of the chalcogen defects probed. Our results and analysis strongly suggest that the common chalcogen defects in our 2D-TMDs, prepared and measured in standard environments, are substitutional oxygen rather than vacancies

    Astrodynamical Space Test of Relativity using Optical Devices I (ASTROD I) - A class-M fundamental physics mission proposal for Cosmic Vision 2015-2025: 2010 Update

    Get PDF
    This paper on ASTROD I is based on our 2010 proposal submitted for the ESA call for class-M mission proposals, and is a sequel and an update to our previous paper [Experimental Astronomy 23 (2009) 491-527; designated as Paper I] which was based on our last proposal submitted for the 2007 ESA call. In this paper, we present our orbit selection with one Venus swing-by together with orbit simulation. In Paper I, our orbit choice is with two Venus swing-bys. The present choice takes shorter time (about 250 days) to reach the opposite side of the Sun. We also present a preliminary design of the optical bench, and elaborate on the solar physics goals with the radiation monitor payload. We discuss telescope size, trade-offs of drag-free sensitivities, thermal issues and present an outlook. ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test General Relativity with an improvement in sensitivity of over 3 orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system; and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and the anomalous Pioneer acceleration, thereby probing dark matter and dark energy gravitationally. It is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, two-wavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals.Comment: 15 pages, 11 figures, 1 table, based on our 2010 proposal submitted for the ESA call for class-M mission proposals, a sequel and an update to previous paper [Experimental Astronomy 23 (2009) 491-527] which was based on our last proposal submitted for the 2007 ESA call, submitted to Experimental Astronom

    Large spin-orbit splitting of deep in-gap defect states of engineered sulfur vacancies in monolayer WS2

    No full text
    Structural defects in 2D materials offer an effective way to engineer new material functionalities beyond conventional doping. We report on the direct experimental correlation of the atomic and electronic structure of a sulfur vacancy in monolayer WS2 by a combination of CO-tip noncontact atomic force microscopy and scanning tunneling microscopy. Sulfur vacancies, which are absent in as-grown samples, were deliberately created by annealing in vacuum. Two energetically narrow unoccupied defect states followed by vibronic sidebands provide a unique fingerprint of this defect. Direct imaging of the defect orbitals, together with ab initio GW calculations, reveal that the large splitting of 252±4 meV between these defect states is induced by spin-orbit coupling.We thank Andreas Schmid, Katherine Cochrane, and Nicholas Borys for constructive discussions. B. S. appreciates the support from the Swiss National Science Foundation under Project No. P2SKP2_171770. Theoretical work was supported by the Center for Computational Study of Excited State Phenomena in Energy Materials, which is funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231, as part of the Computational Materials Sciences Program. The materials synthesis and STM/AFM characterization was performed at the Molecular Foundry that is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under the same contract number. A.W.-B. and B.S. acknowledges DOE Early Career funds to perform the work. S. R.-A. acknowledges the support of Rothschild and Fulbright fellowships. S. B. acknowledges the support of the European Union under Grant No. FP7-PEOPLE-2012-IOF-327581 and of Spanish MINECO (Grant No. MAT2017-88377-C2-1-R). This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231

    Large Spin-Orbit Splitting of Deep In-Gap Defect States of Engineered Sulfur Vacancies in Monolayer WS_{2}.

    No full text
    Structural defects in 2D materials offer an effective way to engineer new material functionalities beyond conventional doping. We report on the direct experimental correlation of the atomic and electronic structure of a sulfur vacancy in monolayer WS_{2} by a combination of CO-tip noncontact atomic force microscopy and scanning tunneling microscopy. Sulfur vacancies, which are absent in as-grown samples, were deliberately created by annealing in vacuum. Two energetically narrow unoccupied defect states followed by vibronic sidebands provide a unique fingerprint of this defect. Direct imaging of the defect orbitals, together with ab initio GW calculations, reveal that the large splitting of 252±4  meV between these defect states is induced by spin-orbit coupling
    corecore