15 research outputs found

    The quasi-biennial oscillation (QBO) and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses

    Get PDF
    The quasi-biennial oscillation (QBO) of the stratospheric tropical winds influences the global circulation over a wide range of latitudes and altitudes. Although it has strong effects on surface weather and climate, climate models have great difficulties in simulating a realistic QBO, especially in the lower stratosphere. Therefore, global wind observations in the tropical upper troposphere and lower stratosphere (UTLS) are of particular interest for investigating the QBO and the tropical waves that contribute significantly to its driving. In our work, we focus on the years 2018–2022 and investigate the QBO and different tropical wave modes in the UTLS region using global wind observations made by the Aeolus satellite instrument and three meteorological reanalyses: the fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-5), the Japanese 55-year Reanalysis (JRA-55) of the Japan Meteorological Agency (JMA), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Further, we compare these data with observations of selected radiosonde stations. By comparison with Aeolus observations, we find that, on zonal average, the QBO in the lower stratosphere is well represented in all three reanalyses, with ERA-5 performing best. Averaged over the years 2018–2022, agreement between Aeolus and the reanalyses is better than 1 to 2 m s−1, with somewhat larger differences during some periods. Differently from zonal averages, radiosonde stations provide only local observations and are therefore biased by global-scale tropical waves, which limits their use as a QBO standard. While reanalyses perform well on zonal average, there can be considerable local biases between reanalyses and radiosondes. We also find that, in the tropical UTLS, zonal wind variances of stationary waves and the most prominent global-scale traveling equatorial wave modes, such as Kelvin waves, Rossby-gravity waves, and equatorial Rossby waves, are in good agreement between Aeolus and all three reanalyses (in most cases better than 20 % of the peak values in the UTLS). On zonal average, this supports the use of reanalyses as a reference for comparison with free-running climate models, while locally, certain biases exist, particularly in the QBO wind shear zones and around the 2019–2020 QBO disruption.</p

    Low Immune Response to Hepatitis B Vaccine among Children in Dakar, Senegal

    Get PDF
    HBV vaccine was introduced into the Expanded Programme on Immunization (EPI) in Senegal and Cameroon in 2005. We conducted a cross-sectional study in both countries to assess the HBV immune protection among children. All consecutive children under 4 years old, hospitalized for any reason between May 2009 and May 2010, with an immunisation card and a complete HBV vaccination, were tested for anti-HBs and anti-HBc. A total of 242 anti-HBc-negative children (128 in Cameroon and 114 in Senegal) were considered in the analysis. The prevalence of children with anti-HBs ≥10 IU/L was higher in Cameroon with 92% (95% CI: 87%–97%) compared to Senegal with 58% (95% CI: 49%–67%), (p<0.001). The response to vaccination in Senegal was lower in 2006–2007 (43%) than in 2008–2009 (65%), (p = 0.028). Our results, although not based on a representative sample of Senegalese or Cameroonian child populations, reveal a significant problem in vaccine response in Senegal. This response problem extends well beyond hepatitis B: the same children who have not developed an immune response to the HBV vaccine are also at risk for diphtheria, tetanus, pertussis (DTwP) and Haemophilus influenzae type b (Hib). Field biological monitoring should be carried out regularly in resource-poor countries to check quality of the vaccine administered

    Global distribution of CO2 in the upper troposphere and stratosphere

    No full text
    In this study, we aim to reconstruct a relevant and new database of monthly zonal mean distribution of carbon dioxide (CO2) at global scale extending from the upper-troposphere (UT) to stratosphere (S). This product can be used for model and satellite validation in the UT/S, as a prior for inversion modelling and mainly to analyse a plausible feature of the stratospherictropospheric exchange as well as the stratospheric circulation and its variability. To do so, we investigate the ability of a Lagrangian trajectory model guided by ERA-Interim reanalysis to construct the CO2 abundance in the UT/S. From 10 year backward trajectories and tropospheric observations of CO2, we reconstruct upper-tropospheric and stratospheric CO2 over the period 2000–2010. The inter-comparisons of the reconstructed CO2 with mid-latitude vertical profiles measured by balloon samples as well as quasi-horizontal air samples from ER-2 aircraft during SOLVE and CONTRAIL campaigns exhibit a remarkable agreement. That demonstrates the potential of Lagrangian model to reconstruct CO2 in the UT/S. The zonal mean distribution exhibits relatively large CO2 in the tropical stratosphere due to the seasonal variation of the tropical upwelling of Brewer-Dobson circulation. During winter and spring, the tropical pipe is relatively isolated but is less confined during summer and autumn so that high CO2 values are more readily transported out of the tropics to the mid- and high latitude stratosphere. The shape of the vertical profiles suggests that relatively high CO2 above 20 km altitude mainly enter the stratosphere through tropical upwelling. CO2 mixing ratio is relatively low in the polar and tropical regions above 25 km. On average the CO2 mixing ratio decreases with altitude by 6-8 ppmv from the UT to stratosphere (e.g. up to 35 km) and is nearly constant with altitude

    Global distribution of CO<sub>2</sub> in the upper troposphere and stratosphere

    Get PDF
    In this study, we aim to reconstruct a relevant and new database of monthly zonal mean distribution of carbon dioxide (CO2) at global scale extending from the upper-troposphere (UT) to stratosphere (S). This product can be used for model and satellite validation in the UT/S, as a prior for inversion modelling and mainly to analyse a plausible feature of the stratospheric-tropospheric exchange as well as the stratospheric circulation and its variability. To do so, we investigate the ability of a Lagrangian trajectory model guided by ERA-Interim reanalysis to construct the CO2 abundance in the UT/S. From 10 year backward trajectories and tropospheric observations of CO2, we reconstruct upper-tropospheric and stratospheric CO2 over the period 2000–2010. The inter-comparisons of the reconstructed CO2 with mid-latitude vertical profiles measured by balloon samples as well as quasi-horizontal air samples from ER-2 aircraft during SOLVE and CONTRAIL campaigns exhibit a remarkable agreement. That demonstrates the potential of Lagrangian model to reconstruct CO2 in the UT/S. The zonal mean distribution exhibits relatively large CO2 in the tropical stratosphere due to the seasonal variation of the tropical upwelling of Brewer-Dobson circulation. During winter and spring, the tropical pipe is relatively isolated but is less narrow during summer and autumn so that high CO2 values are more readily transported out of the tropics to the mid- and high latitude stratosphere. The shape of the vertical profiles suggests that relatively high CO2 above 20 km altitude mainly enter the stratosphere through tropical upwelling. CO2 mixing ratio is relatively low in the polar and tropical regions above 25 km. On average the CO2 mixing ratio decreases with altitude by 6–8 ppmv from the UT to stratosphere (e.g. up to 35 km) and is nearly constant with altitude

    The quasi-biennial oscillation (QBO) and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses

    No full text
    The quasi-biennial oscillation (QBO) of the stratospheric tropical winds influences the global circulation over a wide range of latitudes and altitudes. Although it has strong effects on surface weather and climate, climate models have great difficulties in simulating a realistic QBO, especially in the lower stratosphere. Therefore, global wind observations in the tropical upper troposphere and lower stratosphere (UTLS) are of particular interest for investigating the QBO and the tropical waves that contribute significantly to its driving. In our work, we focus on the years 2018–2022 and investigate the QBO and different tropical wave modes in the UTLS region using global wind observations made by the Aeolus satellite instrument and three meteorological reanalyses: the fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-5), the Japanese 55-year Reanalysis (JRA-55) of the Japan Meteorological Agency (JMA), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Further, we compare these data with observations of selected radiosonde stations. By comparison with Aeolus observations, we find that, on zonal average, the QBO in the lower stratosphere is well represented in all three reanalyses, with ERA-5 performing best. Averaged over the years 2018–2022, agreement between Aeolus and the reanalyses is better than 1 to 2 m s−1, with somewhat larger differences during some periods. Differently from zonal averages, radiosonde stations provide only local observations and are therefore biased by global-scale tropical waves, which limits their use as a QBO standard. While reanalyses perform well on zonal average, there can be considerable local biases between reanalyses and radiosondes. We also find that, in the tropical UTLS, zonal wind variances of stationary waves and the most prominent global-scale traveling equatorial wave modes, such as Kelvin waves, Rossby-gravity waves, and equatorial Rossby waves, are in good agreement between Aeolus and all three reanalyses (in most cases better than 20 % of the peak values in the UTLS). On zonal average, this supports the use of reanalyses as a reference for comparison with free-running climate models, while locally, certain biases exist, particularly in the QBO wind shear zones and around the 2019–2020 QBO disruption

    The QBO and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses

    No full text
    The quasi-biennial oscillation (QBO) of the stratospheric tropical winds influences the global circulation over a wide range of latitudes and altitudes. Although it has strong effects on surface weather and climate, climate models have large difficulties in simulating a realistic QBO, especially in the lower stratosphere. Therefore, global wind observations in the tropical upper troposphere and lower stratosphere (UTLS) are of particular interest for investigating the QBO and the tropical waves that contribute significantly to its driving. In our work, we focus on the years 2018–2022 and investigate the QBO and different tropical wave modes in the UTLS region using global wind observations by the Aeolus satellite instrument, and three meteorological reanalyses (ERA-5, JRA-55, and MERRA-2). Further, we compare these data with observations of selected radiosonde stations. By comparison with Aeolus observations, we find that on zonal average the QBO in the lower stratosphere is well represented in all three reanalyses, with ERA-5 performing best. Averaged over the years 2018–2022, agreement between Aeolus and the reanalyses is better than 1 to 2 m s−1, with somewhat larger differences during some periods. Different from zonal averages, radiosonde stations provide only local observations and are therefore biased by global-scale tropical waves, which limits their use as a QBO standard. While reanalyses perform well on zonal average, there can be considerable local biases between reanalyses and radiosondes. We also find that, in the tropical UTLS, zonal wind variances of stationary waves and the most prominent global-scale traveling equatorial wave modes, such as Kelvin waves, Rossby-gravity waves, and equatorial Rossby waves, are in good agreement between Aeolus and all three reanalyses (in most cases better than 20 % of the peak values in the UTLS). On zonal average, this supports the use of reanalyses as a reference for comparison with free-running climate models, while locally certain biases exist, particularly in the QBO wind shear zones, and around the 2019–2020 QBO disruption

    Lagrangian-based reconstruction of the tracers for stratospheric variability diagnosis

    No full text
    The small-scale variability of tracers (CO2 , O3 , CO), their strong gradients across the tropopause, and the scarcity of suitable observations for validation purposes lead to a challenging task for CTMs and CCMs in reconstructing their distribution in the Upper Troposphere and Lower Stratosphere (UTLS).To do so, we construct a new monthly zonal mean CO2 distribution within the UTLS over the 2000–2010 time period. This reconstructed CO2 product is based on a Lagrangian backward trajectory model driven by ERA-Interim reanalysis meteorology and tropospheric CO2 measurements. Comparisons of our CO2 product to extra-tropical in situ measurements from aircraft transects, balloon and CLaMS profiles show remarkably good agreement. That demonstrates the potential of the TRACZILLA and CLaMS models to reconstruct CO2 in the UTLS. The main features of the CO2 distribution include (1) relatively large mixing ratios in the tropical stratosphere, (2) seasonal variability in the extra-tropics with relatively high mixing ratios in the summer and autumn hemisphere in the 15–20 km altitude layer due to the Summer Asian Monsoon, and (3) decreasing mixing ratios with increasing altitude from the upper troposphere to the middle stratosphere (∼35 km). These features are consistent with expected variability due to the transport of long-lived tracegases by the stratospheric Brewer-Dobson circulation and by the Summer Asian Monsoon anticyclone.The method used here to construct this CO2 product is unique from other modeling efforts and should be useful for model and satellite validation in the UTLS, as a prior for inversion modeling and to analyze features of stratosphere-troposphere exchange as well as the stratospheric circulation and its variability.Finally, we will present our most recent findings about the El niño and La niña influence in the lower stratosphere using the O3 and CO products from CLaMS model and Microwave Limb Sounder observations
    corecore