13 research outputs found

    Mannitol-facilitated CNS entry of rAAV2 vector significantly delayed the neurological disease progression in MPS IIIB mice

    Get PDF
    The presence of the blood-brain barrier (BBB) presents the most critical challenge in therapeutic development for mucopolysaccharidosis (MPS) IIIB, a lysosomal storage disease with severe neurological manifestation, because of alpha-N-acetylglucosaminidase (NaGlu) deficiency. Earlier, we showed a global central nervous system (CNS) transduction in mice by mannitol-facilitated entry of intravenous (IV)-delivered recombinant adeno-associated viral serotype 2 (rAAV2) vector. In this study, we optimized the approach and showed that the maximal transduction in the CNS occurred when the rAAV2 vector was IV injected at 8 min after mannitol administration, and was approximately 10-fold more efficient than IV delivery of the vector at 5 or 10 min after mannitol infusion. Using this optimal (8 min) regimen, a single IV infusion of rAAV2-CMV-hNaGlu vector is therapeutically beneficial for treating the CNS disease of MPS IIIB in adult mice, with significantly extended survival, improved behavioral performance, and reduction of brain lysosomal storage pathology. The therapeutic benefit correlated with maximal delivery to the CNS, but not peripheral tissues. This milestone data shows the first effective gene delivery across the BBB to treat CNS disease. The critical timing of vector delivery and mannitol infusion highlights the important contribution of this pretreatment to successful intervention, and the long history of safe use of mannitol in patients bodes well for its application in CNS gene therapy

    Genistein Improves Neuropathology and Corrects Behaviour in a Mouse Model of Neurodegenerative Metabolic Disease

    Get PDF
    BACKGROUND: Neurodegenerative metabolic disorders such as mucopolysaccharidosis IIIB (MPSIIIB or Sanfilippo disease) accumulate undegraded substrates in the brain and are often unresponsive to enzyme replacement treatments due to the impermeability of the blood brain barrier to enzyme. MPSIIIB is characterised by behavioural difficulties, cognitive and later motor decline, with death in the second decade of life. Most of these neurodegenerative lysosomal storage diseases lack effective treatments. We recently described significant reductions of accumulated heparan sulphate substrate in liver of a mouse model of MPSIIIB using the tyrosine kinase inhibitor genistein. METHODOLOGY/PRINCIPAL FINDINGS: We report here that high doses of genistein aglycone, given continuously over a 9 month period to MPSIIIB mice, significantly reduce lysosomal storage, heparan sulphate substrate and neuroinflammation in the cerebral cortex and hippocampus, resulting in correction of the behavioural defects observed. Improvements in synaptic vesicle protein expression and secondary storage in the cerebral cortex were also observed. CONCLUSIONS/SIGNIFICANCE: Genistein may prove useful as a substrate reduction agent to delay clinical onset of MPSIIIB and, due to its multimodal action, may provide a treatment adjunct for several other neurodegenerative metabolic diseases

    Human Alpha Defensin 5 Expression in the Human Kidney and Urinary Tract

    Get PDF
    The mechanisms that maintain sterility in the urinary tract are incompletely understood. Recent studies have implicated the importance of antimicrobial peptides (AMP) in protecting the urinary tract from infection. Here, we characterize the expression and relevance of the AMP human alpha-defensin 5 (HD5) in the human kidney and urinary tract in normal and infected subjects.Using RNA isolated from human kidney, ureter, and bladder tissue, we performed quantitative real-time PCR to show that DEFA5, the gene encoding HD5, is constitutively expressed throughout the urinary tract. With pyelonephritis, DEFA5 expression significantly increased in the kidney. Using immunoblot analysis, HD5 production also increased with pyelonephritis. Immunostaining localized HD5 to the urothelium of the bladder and ureter. In the kidney, HD5 was primarily produced in the distal nephron and collecting tubules. Using immunoblot and ELISA assays, HD5 was not routinely detected in non-infected human urine samples while mean urinary HD5 production increased with E.coli urinary tract infection.DEFA5 is expressed throughout the urinary tract in non-infected subjects. Specifically, HD5 is expressed throughout the urothelium of the lower urinary tract and in the collecting tubules of the kidney. With infection, HD5 expression increases in the kidney and levels become detectable in the urine. To our knowledge, our findings represent the first to quantitate HD5 expression and production in the human kidney. Moreover, this is the first report to detect the presence of HD5 in infected urine samples. Our results suggest that HD5 may have an important role in maintaining urinary tract sterility

    Neuropathology in Mouse Models of Mucopolysaccharidosis Type I, IIIA and IIIB

    Get PDF
    Mucopolysaccharide diseases (MPS) are caused by deficiency of glycosaminoglycan (GAG) degrading enzymes, leading to GAG accumulation. Neurodegenerative MPS diseases exhibit cognitive decline, behavioural problems and shortened lifespan. We have characterised neuropathological changes in mouse models of MPSI, IIIA and IIIB to provide a better understanding of these events

    Thymic Alterations in GM2 Gangliosidoses Model Mice

    Get PDF
    BACKGROUND: Sandhoff disease is a lysosomal storage disorder characterized by the absence of Ξ²-hexosaminidase and storage of GM2 ganglioside and related glycolipids. We have previously found that the progressive neurologic disease induced in Hexb(-/-) mice, an animal model for Sandhoff disease, is associated with the production of pathogenic anti-glycolipid autoantibodies. METHODOLOGY/PRINCIPAL FINDINGS: In our current study, we report on the alterations in the thymus during the development of mild to severe progressive neurologic disease. The thymus from Hexb(-/-) mice of greater than 15 weeks of age showed a marked decrease in the percentage of immature CD4(+)/CD8(+) T cells and a significantly increased number of CD4(+)/CD8(-) T cells. During involution, the levels of both apoptotic thymic cells and IgG deposits to T cells were found to have increased, whilst swollen macrophages were prominently observed, particularly in the cortex. We employed cDNA microarray analysis to monitor gene expression during the involution process and found that genes associated with the immune responses were upregulated, particularly those expressed in macrophages. CXCL13 was one of these upregulated genes and is expressed specifically in the thymus. B1 cells were also found to have increased in the thy mus. It is significant that these alterations in the thymus were reduced in FcRΞ³ additionally disrupted Hexb(-/-) mice. CONCLUSIONS/SIGNIFICANCE: These results suggest that the FcRΞ³ chain may render the usually poorly immunogenic thymus into an organ prone to autoimmune responses, including the chemotaxis of B1 cells toward CXCL13

    Dysregulation of Gene Expression in a Lysosomal Storage Disease Varies between Brain Regions Implicating Unexpected Mechanisms of Neuropathology

    Get PDF
    The characteristic neurological feature of many neurogenetic diseases is intellectual disability. Although specific neuropathological features have been described, the mechanisms by which specific gene defects lead to cognitive impairment remain obscure. To gain insight into abnormal functions occurring secondary to a single gene defect, whole transcriptome analysis was used to identify molecular and cellular pathways that are dysregulated in the brain in a mouse model of a lysosomal storage disorder (LSD) (mucopolysaccharidosis [MPS] VII). We assayed multiple anatomical regions separately, in a large cohort of normal and diseased mice, which greatly increased the number of significant changes that could be detected compared to past studies in LSD models. We found that patterns of aberrant gene expression and involvement of multiple molecular and cellular systems varied significantly between brain regions. A number of changes revealed unexpected system and process alterations, such as up-regulation of the immune system with few inflammatory changes (a significant difference from the closely related MPS IIIb model), down-regulation of major oligodendrocyte genes even though white matter changes are not a feature histopathologically, and a plethora of developmental gene changes. The involvement of multiple neural systems indicates that the mechanisms of neuropathology in this type of disease are much broader than previously appreciated. In addition, the variation in gene dysregulation between brain regions indicates that different neuropathologic mechanisms may predominate within different regions of a diseased brain caused by a single gene mutation

    Differential distribution of heparan sulfate glycoforms and elevated expression of heparan sulfate biosynthetic enzyme genes in the brain of mucopolysaccharidosis IIIB mice

    Get PDF
    Item does not contain fulltextThe primary pathology in mucopolysaccharidosis (MPS) IIIB is lysosomal storage of heparan sulfate (HS) glycosaminoglycans, leading to complex neuropathology and dysfunction, for which the detailed mechanisms remain unclear. Using antibodies that recognize specific HS glycoforms, we demonstrate differential cell-specific and domain-specific lysosomal HS-GAG distribution in MPS IIIB mouse brain. We also describe a novel neuron-specific brain HS epitope with broad, non-specific increase in the expression in all neurons in MPS IIIB mouse brain, including cerebellar granule neurons, which do not exhibit lysosomal storage pathology. This suggests that biosynthesis of certain HS glycoforms is enhanced throughout the CNS of MPS IIIB mice. Such a conclusion is further supported by demonstration of increased expression of multiple genes encoding enzymes essential in HS biosynthesis, including HS sulfotransferases and epimerases, as well as FGFs, for which HS serves as a co-receptor, in MPS IIIB brain. These data suggest that lysosomal storage of HS may lead to the increase in HS biosyntheses, which may contribute to the neuropathology of MPS IIIB by exacerbating the lysosomal HS storage
    corecore