113 research outputs found

    First-Principles Study on Leakage Current through Si/SiO2_2 Interface

    Full text link
    The relationship between the presence of defects at the stacking structure of the Si/SiO2_2 interface and leakage current is theoretically studied by first-principles calculation. I found that the leakage current through the interface with dangling bonds is 530 times larger than that without any defects, which is expected to lead to dielectric breakdown. The direction of the dangling bonds is closely related to the performance of the oxide as an insulator. In addition, it is proved that the termination of the dangling bonds by hydrogen atoms is effective for reducing the leakage current.Comment: 11 pages. to be published in Phys. Rev.

    Electrical conduction of silicon oxide containing silicon quantum dots

    Full text link
    Current-voltage measurements have been made at room temperature on a Si-rich silicon oxide film deposited via Electron-Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition (ECR-PECVD) and annealed at 750 - 1000∘ ^\circC. The thickness of oxide between Si quantum dots embedded in the film increases with the increase of annealing temperature. This leads to the decrease of current density as the annealing temperature is increased. Assuming the Fowler-Nordheim tunneling mechanism in large electric fields, we obtain an effective barrier height ϕeff\phi_{eff} of ∼\sim 0.7 ±\pm 0.1 eV for an electron tunnelling through an oxide layer between Si quantum dots. The Frenkel-Poole effect can also be used to adequately explain the electrical conduction of the film under the influence of large electric fields. We suggest that at room temperature Si quantum dots can be regarded as traps that capture and emit electrons by means of tunneling.Comment: 14 pages, 5 figures, submitted to J. Phys. Conden. Mat

    In Situ Imaging of the Conducting Filament in a Silicon Oxide Resistive Switch

    Get PDF
    The nature of the conducting filaments in many resistive switching systems has been elusive. Through in situ transmission electron microscopy, we image the real-time formation and evolution of the filament in a silicon oxide resistive switch. The electroforming process is revealed to involve the local enrichment of silicon from the silicon oxide matrix. Semi-metallic silicon nanocrystals with structural variations from the conventional diamond cubic form of silicon are observed, which likely accounts for the conduction in the filament. The growth and shrinkage of the silicon nanocrystals in response to different electrical stimuli show energetically viable transition processes in the silicon forms, offering evidence to the switching mechanism. The study here also provides insights into the electrical breakdown process in silicon oxide layers, which are ubiquitous in a host of electronic devices.Comment: 7 pages, 7 figure

    A multiscale model to predict current absolute risk of femoral fracture in a postmenopausal population

    Get PDF
    Osteoporotic hip fractures are a major healthcare problem. Fall severity and bone strength are important risk factors of hip fracture. This study aims to obtain a mechanistic explanation for fracture risk in dependence of these risk factors. A novel modelling approach is developed that combines models at different scales to overcome the challenge of a large space–time domain of interest and considers the variability of impact forces between potential falls in a subject. The multiscale model and its component models are verified with respect to numerical approximations made therein, the propagation of measurement uncertainties of model inputs is quantified, and model predictions are validated against experimental and clinical data. The main results are model predicted absolute risk of current fracture (ARF0) that ranged from 1.93 to 81.6% (median 36.1%) for subjects in a retrospective cohort of 98 postmenopausal British women (49 fracture cases and 49 controls); ARF0 was computed up to a precision of 1.92 percentage points (pp) due to numerical approximations made in the model; ARF0 possessed an uncertainty of 4.00 pp due to uncertainties in measuring model inputs; ARF0 classified observed fracture status in the above cohort with AUC = 0.852 (95% CI 0.753–0.918), 77.6% specificity (95% CI 63.4–86.5%) and 81.6% sensitivity (95% CI 68.3–91.1%). These results demonstrate that ARF0 can be computed using the model with sufficient precision to distinguish between subjects and that the novel mechanism of fracture risk determination based on fall dynamics, hip impact and bone strength can be considered validated
    • …
    corecore