915 research outputs found

    Revving-Up Revlon in the Wake of Rural Metro: A Call for Direct Liability on Financial Advisors

    Get PDF

    Entanglement genesis by ancilla-based parity measurement in 2D circuit QED

    Get PDF
    We present an indirect two-qubit parity meter in planar circuit quantum electrodynamics, realized by discrete interaction with an ancilla and a subsequent projective ancilla measurement with a dedicated, dispersively coupled resonator. Quantum process tomography and successful entanglement by measurement demonstrate that the meter is intrinsically quantum non-demolition. Separate interaction and measurement steps allow commencing subsequent data qubit operations in parallel with ancilla measurement, offering time savings over continuous schemes.Comment: 5 pages, 4 figures; supplemental material with 5 figure

    High Kinetic Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field

    Get PDF
    We present superconducting microwave-frequency resonators based on NbTiN nanowires. The small cross section of the nanowires minimizes vortex generation, making the resonators resilient to magnetic fields. Measured intrinsic quality factors exceed 2×1052\times 10^5 in a 66 T in-plane magnetic field, and 3×1043\times 10^4 in a 350350 mT perpendicular magnetic field. Due to their high characteristic impedance, these resonators are expected to develop zero-point voltage fluctuations one order of magnitude larger than in standard coplanar waveguide resonators. These properties make the nanowire resonators well suited for circuit QED experiments needing strong coupling to quantum systems with small electric dipole moments and requiring a magnetic field, such as electrons in single and double quantum dots

    Partial-measurement back-action and non-classical weak values in a superconducting circuit

    Get PDF
    We realize indirect partial measurement of a transmon qubit in circuit quantum electrodynamics by interaction with an ancilla qubit and projective ancilla measurement with a dedicated readout resonator. Accurate control of the interaction and ancilla measurement basis allows tailoring the measurement strength and operator. The tradeoff between measurement strength and qubit back-action is characterized through the distortion of a qubit Rabi oscillation imposed by ancilla measurement in different bases. Combining partial and projective qubit measurements, we provide the solid-state demonstration of the correspondence between a non-classical weak value and the violation of a Leggett-Garg inequality.Comment: 5 pages, 4 figures, and Supplementary Information (8 figures

    Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates

    Full text link
    We present a theoretical analysis of the selective darkening method for implementing quantum controlled-NOT (CNOT) gates. This method, which we recently proposed and demonstrated, consists of driving two transversely-coupled quantum bits (qubits) with a driving field that is resonant with one of the two qubits. For specific relative amplitudes and phases of the driving field felt by the two qubits, one of the two transitions in the degenerate pair is darkened, or in other words, becomes forbidden by effective selection rules. At these driving conditions, the evolution of the two-qubit state realizes a CNOT gate. The gate speed is found to be limited only by the coupling energy J, which is the fundamental speed limit for any entangling gate. Numerical simulations show that at gate speeds corresponding to 0.48J and 0.07J, the gate fidelity is 99% and 99.99%, respectively, and increases further for lower gate speeds. In addition, the effect of higher-lying energy levels and weak anharmonicity is studied, as well as the scalability of the method to systems of multiple qubits. We conclude that in all these respects this method is competitive with existing schemes for creating entanglement, with the added advantages of being applicable for qubits operating at fixed frequencies (either by design or for exploitation of coherence sweet-spots) and having the simplicity of microwave-only operation.Comment: 25 pages, 5 figure

    Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    Get PDF
    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities, advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today, the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes

    Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    Get PDF
    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities. advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today. the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes
    corecore