We present superconducting microwave-frequency resonators based on NbTiN
nanowires. The small cross section of the nanowires minimizes vortex
generation, making the resonators resilient to magnetic fields. Measured
intrinsic quality factors exceed 2×105 in a 6 T in-plane magnetic
field, and 3×104 in a 350 mT perpendicular magnetic field. Due to
their high characteristic impedance, these resonators are expected to develop
zero-point voltage fluctuations one order of magnitude larger than in standard
coplanar waveguide resonators. These properties make the nanowire resonators
well suited for circuit QED experiments needing strong coupling to quantum
systems with small electric dipole moments and requiring a magnetic field, such
as electrons in single and double quantum dots