1,611 research outputs found

    Personal Reflections from ePortfolio: AHRC New York City

    Get PDF

    Earth science: River incision revisited

    Get PDF
    A data-set compilation suggests that measurements of river erosion into rock depend on the observation timescale, casting doubt on whether terraces and other incised landforms faithfully record changes in climate and tectonics

    Dry sediment loading of headwater channels fuels post-wildfire debris flows in bedrock landscapes

    Get PDF
    Landscapes following wildfire commonly have significant increases in sediment yield and debris flows that pose major hazards and are difficult to predict. Ultimately, post-wildfire sediment yield is governed by processes that deliver sediment from hillslopes to channels, but it is commonly unclear the degree to which hillslope sediment delivery is driven by wet versus dry processes, which limits the ability to predict debris-flow occurrence and response to climate change. Here we use repeat airborne lidar topography to track sediment movement following the 2009 CE Station Fire in southern California, USA, and show that post-wildfire debris flows initiated in channels filled by dry sediment transport, rather than on hillsides during rainfall as typically assumed. We found widespread patterns of 1–3 m of dry sediment loading in headwater channels immediately following wildfire and before rainfall, followed by sediment excavation during subsequent storms. In catchments where post-wildfire dry sediment loading was absent, possibly due to differences in lithology, channel scour during storms did not occur. Our results support a fire-flood model in bedrock landscapes whereby debris-flow occurrence depends on dry sediment loading rather than hillslope-runoff erosion, shallow landslides, or burn severity, indicating that sediment supply can limit debris-flow occurrence in bedrock landscapes with more-frequent fires

    Erratum to: Cosmogenic 10Be-derived denudation rates of the Eastern and Southern European Alps

    Get PDF
    Denudation rates from cosmogenic 10Be measured in quartz from recent river sediment have previously been used in the Central Alps to argue that rock uplift occurs through isostatic response to erosion in the absence of ongoing convergence. We present new basin-averaged denudation rates from large rivers in the Eastern and Southern European Alps together with a detailed topographic analysis in order to infer the forces driving erosion. Denudation rates in the Eastern and Southern Alps of 170-1,400mmky−1 are within a similar range to those in the Central Alps for similar lithologies. However, these denudation rates vary considerably with lithology, and their variability generally increases with steeper landscapes, where correlations with topographic metrics also become poorer. Tertiary igneous rocks are associated with steep hillslopes and channels and low denudation rates, whereas pre-Alpine gneisses usually exhibit steep hillslopes and higher denudation rates. Molasse, flysch, and schists display lower mean basin slopes and channel gradients, and, despite their high erodibility, low erosion rates. Exceptionally low denudation rates are also measured in Permian rhyolite, which has high mean basin slopes. We invoke geomorphic inheritance as a major factor controlling erosion, such that large erosive glaciers in the late Quaternary cold periods were more effective in priming landscapes in the Central Alps for erosion than in the interior Eastern Alps. However, the difference in tectonic evolution of the Eastern and Central Alps potentially adds to differences in their geomorphic response; their deep structures differ significantly and, unlike the Central Alps, the Eastern Alps are affected by ongoing tectonic influx due to the slow motion and rotation of Adria. The result is a complex pattern of high mountain erosion in the Eastern Alps, which has evolved from one confined to the narrow belt of the Tauern Window in late Tertiary time to one affecting the entire underthrust basement, orogenic lid, and parts of the Southern Alps toda

    Patient Perspectives on Medication Assisted Therapy in Vermont

    Get PDF
    Introduction. Medication-Assisted Therapy (MAT) for opioid addiction has dramatically increased in Vermont, supported by a novel statewide system that integrates specialty treatment centers ( Hubs ) with primary care office-based opioid therapy ( Spokes ). In 2010, Vermont had the highest per capita buprenorphine use in the US. Previous studies of patient perspectives of MAT have identified social barriers, rigid program rules, and concerns about withdrawal and relapse as common causes of treatment failure. Our goal was to elicit patient perspectives on barriers and enablers of successful MAT to further inform system refinement. Methods. An interview guide was developed based on previous literature as well as discussions with program leadership, staff and clinicians, and community stakeholders. Responses were organized using thematic content analysis with consensus across seven interviewers and two analysts. The interviews were conducted with 44 patients enrolled in MAT at two Hub sites in Burlington, VT in October 2016. Results. The median age of subjects was 34 years, 34% were employed at least part-time, and 72% were female. Half reported a mental health condition and 20% reported chronic pain. Barriers included transportation (25%), lack of stable housing, and stigma (41%). Enablers included feeling supported (82% felt well-supported; 52% felt supported by healthcare professionals). Subjects expressed high confidence in the treatment system and high self-efficacy for sobriety. Conclusions. Patients in MAT have complex medical, mental health, social, personal, and work lives. A comprehensive system that addresses this wide range of domains is critical to achieving optimal outcomes.https://scholarworks.uvm.edu/comphp_gallery/1245/thumbnail.jp

    Deltaic deposits at Aeolis Dorsa: Sedimentary evidence for a standing body of water on the northern plains of Mars

    Get PDF
    A fundamental long-standing question regarding Mars history is whether the flat and low-lying northern plains ever hosted an ocean. The best opportunity to solve this problem is provided by stratigraphic observations of sedimentary deposits onlapping the crustal dichotomy. Here, we use high-resolution imagery and topography to analyze a branching network of inverted channel and channel lobe deposits in the Aeolis Dorsa region, just north of the dichotomy boundary. Observations of stacked, cross-cutting channel bodies and stratal geometries indicate that these landforms represent exhumed distributary channel deposits. Observations of depositional trunk feeder channel bodies, a lack of evidence for past topographic confinement, channel avulsions at similar elevations, and the presence of a strong break in dip slope between topset and foreset beds suggest that this distributary system was most likely a delta, rather than an alluvial fan or submarine fan. Sediment transport calculations using both measured and derived channel geometries indicate a minimum delta deposition time on the order of 400  years. The location of this delta within a thick and widespread clastic wedge abutting the crustal dichotomy boundary, unconfined by any observable craters, suggests a standing body of water potentially 105 km2 in extent or greater and is spatially consistent with hypotheses for a northern ocean

    Cosmogenic 10Be-derived denudation rates of the Eastern and Southern European Alps

    Get PDF
    Denudation rates from cosmogenic 10Be measured in quartz from recent river sediment have previously been used in the Central Alps to argue that rock uplift occurs through isostatic response to erosion in the absence of ongoing convergence. We present new basin-averaged denudation rates from large rivers in the Eastern and Southern European Alps together with a detailed topographic analysis in order to infer the forces driving erosion. Denudation rates in the Eastern and Southern Alps of 170-1,400mmky−1 are within a similar range to those in the Central Alps for similar lithologies. However, these denudation rates vary considerably with lithology, and their variability generally increases with steeper landscapes, where correlations with topographic metrics also become poorer. Tertiary igneous rocks are associated with steep hillslopes and channels and low denudation rates, whereas pre-Alpine gneisses usually exhibit steep hillslopes and higher denudation rates. Molasse, flysch, and schists display lower mean basin slopes and channel gradients, and, despite their high erodibility, low erosion rates. Exceptionally low denudation rates are also measured in Permian rhyolite, which has high mean basin slopes. We invoke geomorphic inheritance as a major factor controlling erosion, such that large erosive glaciers in the late Quaternary cold periods were more effective in priming landscapes in the Central Alps for erosion than in the interior Eastern Alps. However, the difference in tectonic evolution of the Eastern and Central Alps potentially adds to differences in their geomorphic response; their deep structures differ significantly and, unlike the Central Alps, the Eastern Alps are affected by ongoing tectonic influx due to the slow motion and rotation of Adria. The result is a complex pattern of high mountain erosion in the Eastern Alps, which has evolved from one confined to the narrow belt of the Tauern Window in late Tertiary time to one affecting the entire underthrust basement, orogenic lid, and parts of the Southern Alps toda

    Nature of Geographic Information : An Open Geospatial Textbook

    Get PDF
    1. Data and Information2. Scales and Transformations3. Census Data and Thematic Maps4. TIGER, Topology and Geocoding5. Land Surveying and GPS6. National Spatial Data Infrastructure I7. National Spatial Data Infrastructure II8. Remotely Sensed Image Data9. Integrating Geographic DataThe purpose of this text is to promote understanding of the Geographic Information Science and Technology enterprise (GIS&T, also known as "geospatial")

    Mass wasting triggered by seasonal CO<sub>2</sub> sublimation under Martian atmospheric conditions: Laboratory experiments

    Get PDF
    Sublimation is a recognized process by which planetary landscapes can be modified. However, interpretation of whether sublimation is involved in downslope movements on Mars and other bodies is restricted by a lack of empirical data to constrain this mechanism of sediment transport and its influence on landform morphology. Here we present the first set of laboratory experiments under Martian atmospheric conditions which demonstrate that the sublimation of CO2 ice from within the sediment body can trigger failure of unconsolidated, regolith slopes and can measurably alter the landscape. Previous theoretical studies required CO2 slab ice for movements, but we find that only frost is required. Hence, sediment transport by CO2 sublimation could be more widely applicable (in space and time) on Mars than previously thought. This supports recent work suggesting CO2 sublimation could be responsible for recent modification in Martian gullies

    Force chains as the link between particle and bulk friction angles in granular material

    Get PDF
    From sediment transport in rivers to landslides, predictions of granular motion rely on a Mohr-Coulomb failure criterion parameterized by a friction angle. Measured friction angles are generally large for single grains, smaller for large numbers of grains, and no theory exists for intermediate numbers of grains. We propose that a continuum of friction angles exists between single-grain and bulk friction angles due to grain-to-grain force chains. Physical experiments, probabilistic modeling, and discrete element modeling demonstrate that friction angles decrease by up to 15° as the number of potentially mobile grains increases from 1 to ~20. Decreased stability occurs as longer force chains more effectively dislodge downslope “keystone” grains, implying that bulk friction angles are set by the statistics of single-grain friction angles. Both angles are distinct from and generally larger than grain contact-point friction, with implications for a variety of sediment transport processes involving small clusters of grains
    corecore