24 research outputs found

    Next Generation Sequencing and Animal Models Reveal SLC9A3R1 as a New Gene Involved in Human Age-Related Hearing Loss

    Get PDF
    Age-related hearing loss (ARHL) is the most common sensory impairment in the elderly affecting millions of people worldwide. To shed light on the genetics of ARHL, a large cohort of 464 Italian patients has been deeply characterized at clinical and molecular level. In particular, 46 candidate genes, selected on the basis of genome-wide association studies (GWAS), animal models and literature updates, were analyzed by targeted re-sequencing. After filtering and prioritization steps, SLC9A3R1 has been identified as a strong candidate and then validated by “in vitro” and “in vivo” studies. Briefly, a rare (MAF: 2.886e-5) missense variant c.539G > A, p.(R180Q) was detected in two unrelated male patients affected by ARHL characterized by a severe to profound high-frequency hearing loss. The variant, predicted as damaging, was not present in healthy matched controls. Protein modeling confirmed the pathogenic effect of p.(R180Q) variant on protein’s structure leading to a change in the total number of hydrogen bonds. In situ hybridization showed slc9a3r1 expression in zebrafish inner ear. A zebrafish knock-in model, generated by CRISPR-Cas9 technology, revealed a reduced auditory response at all frequencies in slc9a3r1R180Q/R180Q mutants compared to slc9a3r1+/+ and slc9a3r1+/R180Q animals. Moreover, a significant reduction (5.8%) in the total volume of the saccular otolith (which is responsible for sound detection) was observed in slc9a3r1R180Q/R180Q compared to slc9a3r1+/+ (P = 0.0014), while the utricular otolith, necessary for balance, was not affected in agreement with the human phenotype. Overall, these data strongly support the role of SLC9A3R1 gene in the pathogenesis of ARHL opening new perspectives in terms of diagnosis, prevention and treatment

    A c.3037G > A mutation in FBN1 gene causing Marfan syndrome with an atypically severe phenotype.

    Get PDF
    Marfan syndrome is a pleiotropic connective tissue disease inherited as an autosomal dominant trait, mostly caused by mutations in the FBN1 gene, which is located on chromosome 15q21.1 and encoding fibrillin 1. We report a case of Marfan syndrome presenting with severe ocular and systemic manifestations, such as cardiac congenital anomalies. The patient underwent a multidisciplinary approach and his clinical diagnosis was associated with a c.3037G > A mutation in the FBN1 gene. Identification of this genetic alteration should instigate a prompt multidisciplinary assessment and monitoring, in order to prevent devastating consequences such as cardiac and ocular phenotype. Molecular modeling of the mutation highlighted the importance of the preservation of the calcium-dependent structure of an epidermal -growth-factor-like domain of fibrillin-1 and consequently the microfibrillar formation process. This report aims to highlight the importance of an early clinical and molecular diagnosis and once more, the importance of the multidisciplinary approach of this genetic entity

    Haploinsufficiency as a Foreground Pathomechanism of Poirer-Bienvenu Syndrome and Novel Insights Underlying the Phenotypic Continuum of CSNK2B-Associated Disorders

    Get PDF
    CSNK2B encodes for the regulatory subunit of the casein kinase II, a serine/threonine kinase that is highly expressed in the brain and implicated in development, neuritogenesis, synaptic transmission and plasticity. De novo variants in this gene have been identified as the cause of the Poirier-Bienvenu Neurodevelopmental Syndrome (POBINDS) characterized by seizures and variably impaired intellectual development. More than sixty mutations have been described so far. However, data clarifying their functional impact and the possible pathomechanism are still scarce. Recently, a subset of CSNK2B missense variants affecting the Asp32 in the KEN box-like domain were proposed as the cause of a new intellectual disability-craniodigital syndrome (IDCS). In this study, we combined predictive functional and structural analysis and in vitro experiments to investigate the effect of two CSNK2B mutations, p.Leu39Arg and p.Met132LeufsTer110, identified by WES in two children with POBINDS. Our data prove that loss of the CK2beta protein, due to the instability of mutant CSNK2B mRNA and protein, resulting in a reduced amount of CK2 complex and affecting its kinase activity, may underlie the POBINDS phenotype. In addition, the deep reverse phenotyping of the patient carrying p.Leu39Arg, with an analysis of the available literature for individuals with either POBINDS or IDCS and a mutation in the KEN box-like motif, might suggest the existence of a continuous spectrum of CSNK2B-associated phenotypes rather than a sharp distinction between them

    Congenital amegakaryocytic thrombocytopenia: clinical and biological consequences of five novel mutations

    Get PDF
    BACKGROUND AND OBJECTIVES: Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare, autosomal recessive disorder induced by mutations of the gene coding for thrombopoietin (TPO) receptor (c-MPL). Patients initially present with isolated thrombocytopenia that subsequently progresses into pancytopenia. Although the mechanisms leading to aplasia are unknown, the age of onset has been reported to depend on the severity of the c-MPL functional defect. To improve our knowledge in this field, we studied clinical and biological features of five new patients. DESIGN AND METHODS: We diagnosed five CAMT patients, identified c-MPL mutations, including five novel alterations and investigated relationships between mutations and their clinical-biological consequences. RESULTS: In all cases, platelet c-MPL and bone marrow colonies were reduced, while serum TPO levels were elevated. We also documented that the percentage of bone marrow cells expressing tumor necrosis factor-a and interferon-g was increased during pancytopenia as compared to in controls, suggesting that, as in other bone marrow failure diseases, these inhibitory cytokines contributed to the pancytopenia. Contrary to previously published data, we found no evidence of correlations between different types of mutations and the clinical course. INTERPRETATION AND CONCLUSIONS: These results suggest that therapies, such as hematopoietic stem cell transplantation, which are potentially curative although associated with a risk of treatment-related mortality, should not be postponed even in those CAMT patients whose c-MPL mutations might predict residual activity of the TPO receptor

    What Is the Exact Contribution of PITX1 and TBX4 Genes in Clubfoot Development? An Italian Study

    Get PDF
    Congenital clubfoot is a common pediatric malformation that affects approximately 0.1% of all births. 80% of the cases appear isolated, while 20% can be secondary or associated with complex syndromes. To date, two genes that appear to play an important role are PTIX1 and TBX4, but their actual impact is still unclear. Our study aimed to evaluate the prevalence of pathogenic variants in PITX1 and TBX4 in Italian patients with idiopathic clubfoot. PITX1 and TBX4 genes were analyzed by sequence and SNP array in 162 patients. We detected only four nucleotide variants in TBX4, predicted to be benign or likely benign. CNV analysis did not reveal duplications or deletions involving both genes and intragenic structural variants. Our data proved that the idiopathic form of congenital clubfoot was rarely associated with mutations and CNVs on PITX1 and TBX4. Although in some patients, the disease was caused by mutations in both genes; they were responsible for only a tiny minority of cases, at least in the Italian population. It was not excluded that other genes belonging to the same TBX4-PITX1 axis were involved, even if genetic complexity at the origin of clubfoot required the involvement of other factors

    Next-generation sequencing identified SPATC1L as a possible candidate gene for both early-onset and age-related hearing loss

    Get PDF
    Hereditary hearing loss (HHL) and age-related hearing loss (ARHL) are two major sensory diseases affecting millions of people worldwide. Despite many efforts, additional HHL-genes and ARHL genetic risk factors still need to be identified. To fill this gap a large genomic screening based on next-generation sequencing technologies was performed. Whole exome sequencing in a 3-generation Italian HHL family and targeted re-sequencing in 464 ARHL patients were performed. We detected three variants in SPATC1L: a nonsense allele in an HHL family and a frameshift insertion and a missense variation in two unrelated ARHL patients. In silico molecular modelling of all variants suggested a significant impact on the structural stability of the protein itself, likely leading to deleterious effects and resulting in truncated isoforms. After demonstrating Spatc1l expression in mice inner ear, in vitro functional experiments were performed confirming the results of the molecular modelling studies. Finally, a candidate-gene population-based statistical study in cohorts from Caucasus and Central Asia revealed a statistically significant association of SPATC1L with normal hearing function at low and medium hearing frequencies. Overall, the amount of different genetic data presented here (variants with early-onset and late-onset hearing loss in addition to genetic association with normal hearing function), together with relevant functional evidence, likely suggest a role of SPATC1L in hearing function and loss

    Genome-wide association analysis on normal hearing function identifies PCDH20 and SLC28A3 as candidates for hearing function and loss

    Get PDF
    Hearing loss and individual differences in normal hearing both have a substantial genetic basis. Although many new genes contributing to deafness have been identified, very little is known about genes/variants modulating the normal range of hearing ability. To fill this gap, we performed a two-stage meta-analysis on hearing thresholds (tested at 0.25, 0.5, 1, 2, 4, 8 kHz) and on pure-tone averages (low-, medium-and high-frequency thresholds grouped) in several isolated populations from Italy and Central Asia (total N = 2636). Here, we detected two genome-wide significant loci close to PCDH20 and SLC28A3 (top hits: rs78043697, P = 4.71E-10 and rs7032430, P = 2.39E-09, respectively). For both loci, we sought replication in two independent cohorts: B58C from the UK (N = 5892) and FITSA from Finland (N = 270). Both loci were successfully replicated at a nominal level of significance (P <0.05). In order to confirm our quantitative findings, we carried out RT-PCR and reported RNA-Seq data, which showed that both genes are expressed in mouse inner ear, especially in hair cells, further suggesting them as good candidates for modulatory genes in the auditory system. Sequencing data revealed no functional variants in the coding region of PCDH20 or SLC28A3, suggesting that variation in regulatory sequences may affect expression. Overall, these results contribute to a better understanding of the complex mechanisms underlying human hearing function.Peer reviewe

    Identification of a New Mutation in <i>RSK2</i>, the Gene for Coffin–Lowry Syndrome (CLS), in Two Related Patients with Mild and Atypical Phenotypes

    Get PDF
    Background: Coffin–Lowry syndrome (CLS) is a syndromic form of X-linked intellectual disability, in which specific associated facial, hand, and skeletal abnormalities are diagnostic features. Methods: In the present study, an unreported missense genetic variant of the ribosomal S6 kinase 2 (RSK2) gene has been identified, by next-generation sequencing, in two related males with two different phenotypes of intellectual disability (ID) and peculiar facial dysmorphisms. We performed functional studies on this variant and another one, already reported in the literature, involving the same amino acid residue but, to date, without an efficient characterization. Results: Our study demonstrated that the two variants involving residue 189 significantly impaired its kinase activity. Conclusions: We detected a loss-of-function RSK2 mutation with loss in kinase activity in a three-generation family with an X-linked ID
    corecore