30 research outputs found

    Early stage sinkhole formation in the acque albule basin of central Italy from geophysical and geochemical observations

    Get PDF
    Sinkhole occurrence along the Tyrrhenian margin of the Central Apennines is of great importance for applied research, land management and civil protection. This study reports on GPS-altimetry magnetic, gravity, geoelectric, seismic, and soil gas measurements of a rapidly developing sinkhole near the Guidonia military airport. The measurements revealed an elliptical 2-m depression elongated 220 m in the NNE-SSW direction with the minor axis of 110 m. In spring of 2013, two vertical cavities formed in the eastern and northeastern flanks of the depression whose depths and shapes are rapidly evolving with the formation of widespread fracturing along the same side. The geophysical observations image the developing sinkhole to a depth of some 50 m, the presence of the Travertino lithotype around the depression (down to at least 40 m), and the lack of this lithotype below the lowered area. The sinkhole's evolution appears to be structurally controlled by local and regional faulting. These results are useful for designing further geophysical, geotechnical and geochemical studies to monitor the sinkhole's evolution and to assess the hazard it presents in densely urbanized area.Published36-477A. Geofisica di esplorazioneJCR Journalreserve

    Imaging the three-dimensional architecture of the Middle Aterno basin (2009 L’Aquila earthquake, Central Italy) using ground TDEM and seismic noise surveys: preliminary results

    Get PDF
    We present preliminary results from a multidisciplinary geophysical approach applied to the imaging of the threedimensional architecture of the Middle Aterno basin, close to the epicentral area of the 2009 L’Aquila earthquake (central Italy). We collected several time domain electromagnetic soundings (TDEM) coupled with seismic noise measurements focusing on the characterization of the bedrock/infill interface. Our preliminary results agree with existing geophysical data collected in the area, and show that the southeastern portion of the basin is characterized by a deepening of the Mesozoic-Tertiary bedrock down to a depth of more than 450 m. We found that a joint use of electromagnetic and seismic methods significantly contributes in obtaining new insights on the 3D geometry of the Middle Aterno basin. Moreover, we believe that our combined approach based on TDEM and noise measurements can be adopted to investigate similar geological settings elsewhere.PublishedPescina (AQ)2T. Tettonica attivaope

    Imaging the three-dimensional architecture of the Middle Aterno basin (2009 L’ Aquila earthquake, Central Italy) using ground TDEM and seismic noise surveys: preliminary results

    Get PDF
    We present preliminary results from a multidisciplinary geophysical approach ap- plied to the imaging of the three-dimensional architecture of the Middle Aterno basin, close to the epicentral area of the 2009 L’Aquila earthquake (central Italy). We collected several time domain electromagnetic soundings (TDEM) coupled with seismic noise measurements focu- sing on the characterization of the bedrock/in ll interface. Our preliminary results agree with existing geophysical data collected in the area, and show that the southeastern portion of the basin is characterized by a deepening of the Mesozoic-Tertiary bedrock down to a depth of more than 450 m. We found that a joint use of electromagnetic and seismic methods signi - cantly contributes in obtaining new insights on the 3D geometry of the Middle Aterno basin. Moreover, we believe that our combined approach based on TDEM and noise measurements can be adopted to investigate similar geological settings elsewhere.PublishedPescina (AQ), Italy2T. Tettonica attiva3T. Pericolosità sismica e contributo alla definizione del rischio7A. Geofisica di esplorazioneope

    Imaging the three-dimensional architecture of the Middle Aterno basin (2009 L’Aquila earthquake, Central Italy) using ground TDEM and seismic noise surveys: preliminary results

    Get PDF
    We present preliminary results from a multidisciplinary geophysical approach applied to the imaging of the threedimensional architecture of the Middle Aterno basin, close to the epicentral area of the 2009 L’Aquila earthquake (central Italy). We collected several time domain electromagnetic soundings (TDEM) coupled with seismic noise measurements focusing on the characterization of the bedrock/infill interface. Our preliminary results agree with existing geophysical data collected in the area, and show that the southeastern portion of the basin is characterized by a deepening of the Mesozoic-Tertiary bedrock down to a depth of more than 450 m. We found that a joint use of electromagnetic and seismic methods significantly contributes in obtaining new insights on the 3D geometry of the Middle Aterno basin. Moreover, we believe that our combined approach based on TDEM and noise measurements can be adopted to investigate similar geological settings elsewhere

    On the determination of characteristics of the interior ocean dynamics from radar signatures of oceanic internal solitary waves

    Get PDF
    In this paper we discuss two different methods of inferring characteristics of the interior ocean dynamics from radar signatures of internal solitary waves visible on synthetic aperture radar (SAR) images. The first one consists in the recognition and the interpretation of sea surface patterns of internal solitary waves; the second one consists in the analysis of the modulation depth of the normalized radar backscattering cross section (NRCS) associated with internal solitary waves. For this purpose we consider a data set composed of SAR and in situ measurements carried out from 1991 to 1997 in the region of the Strait of Messina. The recognition and the interpretation of sea surface patterns of internal solitary waves in the Strait of Messina can be used to study characteristics of the density distribution in the area: The internal wave field varies with seasonal variations in the vertical density stratification and with remotely induced variations, i.e., variations induced by the larger-scale circulation, in the horizontal density distribution. In order to inquire into the possibility of inferring parameters of the interior ocean dynamics by analyzing the modulation of the NRCS associated with internal solitary waves, several numerical simulations are carried out using a radar imaging model. These simulations are performed by assuming different wind conditions and internal wave parameters. It is shown that an accurate knowledge of wind conditions is crucial for deriving internal wave parameters and hence parameters of the interior ocean dynamics from the modulation of measured NRCS associated with internal solitary waves

    Blast-induced liquefaction in silty sands for full-scale testing of ground improvement methods: Insights from a multidisciplinary study

    Get PDF
    In the engineering geology field increased attention has been posed in recent years to potential liquefaction mitigation interventions in susceptible sand formations. In silty sands this is a major challenge because, as the fines content increases, vibratory methods for densification become progressively less effective. An alternative mitigation technique can be the installation of Rammed Aggregate Pier\uae (RAP) columns that can increase the resistance of the soil, accounting for its lateral stress increase and for the stiffness increase from soil and RAP composite response. To investigate the influence of these factors on liquefaction resistance, full-scale blast tests were performed at a silty sand site in Bondeno (Ferrara, Italy) where liquefaction was observed after the 2012 Emilia-Romagna earthquake. A multidisciplinary team of forty researchers carried out devoted experimental activities aimed at better understanding the liquefaction process at the field scale and the effectiveness of the treatment using inter-related methods. Both natural and improved areas were investigated by in-situ tests and later subjected to controlled blasting. The blast tests were monitored with geotechnical and geophysical instrumentation, topographical surveying and geological analyses on the sand boils. Results showed the RAP effectiveness due to the improvement of soil properties within the liquefiable layer and a consequent reduction of the blast-induced liquefaction settlements, likely due to soil densification and increased lateral stress. The applied multidisciplinary approach adopted for the study allowed better understanding of the mechanism involved in the liquefaction mitigation intervention and provided a better overall evaluation of mitigation effectiveness

    A systems-level analysis highlights microglial activation as a modifying factor in common epilepsies

    Get PDF
    Aims: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. // Methods: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type specific depletion was used in a murine model of acquired epilepsy. // Results: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers, and in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. // Conclusions: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control

    A systems-level analysis highlights microglial activation as a modifying factor in common epilepsies

    Get PDF
    Aims: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. Methods: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. Results: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. Conclusions: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control

    A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy

    Get PDF
    We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km 2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting
    corecore