52 research outputs found

    The view from elsewhere: perspectives on ALife Modeling

    Get PDF
    Many artificial life researchers stress the interdisciplinary character of the field. Against such a backdrop, this report reviews and discusses artificial life, as it is depicted in, and as it interfaces with, adjacent disciplines (in particular, philosophy, biology, and linguistics), and in the light of a specific historical example of interdisciplinary research (namely cybernetics) with which artificial life shares many features. This report grew out of a workshop held at the Sixth European Conference on Artificial Life in Prague and features individual contributions from the workshop's eight speakers, plus a section designed to reflect the debates that took place during the workshop's discussion sessions. The major theme that emerged during these sessions was the identity and status of artificial life as a scientific endeavor

    Estimating the conditions for polariton condensation in organic thin-film microcavities

    Full text link
    We examine the possibility of observing Bose condensation of a confined two-dimensional polariton gas in an organic quantum well. We deduce a suitable parameterization of a model Hamiltonian based upon the cavity geometry, the biexciton binding energy, and similar spectroscopic and structural data. By converting the sum-over-states to a semiclassical integration over dd-dimensional phase space, we show that while an ideal 2-D Bose gas will not undergo condensation, an interacting gas with the Bogoliubov dispersion H(p)spH(p)\approx s p close to p=0p=0 will undergo Bose condensation at a given critical density and temperature. We show that Tc/ρcT_c/\sqrt{\rho_c} is sensitive to both the cavity geometry and to the biexciton binding energy. In particular, for strongly bound biexcitons, the non-linear interaction term appearing in the Gross-Pitaevskii equation becomes negative and the resulting ground state will be a localized soliton state rather than a delocalized Bose condensate.Comment: 2 figure

    Environmental Regulation Can Arise Under Minimal Assumptions

    No full text
    Models that demonstrate environmental regulation as a consequence of organism and environment coupling all require a number of core assumptions. Many previous models, such as Daisyworld, require that certain environment-altering traits have a selective advantage when those traits also contribute towards global regulation. We present a model that results in the regulation of a global environmental resource through niche construction without employing this and other common assumptions. There is no predetermined environmental optimum towards which regulation should proceed assumed or coded into the model. Nevertheless, polymorphic stable states that resist perturbation emerge from the simulated co-evolution of organisms and environment. In any single simulation a series of different stable states are realised, punctuated by rapid transitions. Regulation is achieved through two main subpopulations that are adapted to slightly different resource values, which force the environmental resource in opposing directions. This maintains the resource within a comparatively narrow band over a wide range of external perturbations. Population driven oscillations in the resource appear to be instrumental in protecting the regulation against mutations that would otherwise destroy it. Sensitivity analysis shows that the regulation is robust to mutation and to a wide range of parameter settings. Given the minimal assumptions employed, the results could reveal a mechanism capable of environmental regulation through the by-products of organisms

    IMG 305 - PEMBUNGKUSAN MAKANAN NOV.05.

    Get PDF
    We discuss the use of Agent-based Modelling for the development and testing of theories about emergent social phenomena in marketing and the social sciences in general. We address both theoretical aspects about the types of phenomena that are suitably addressed with this approach and practical guidelines to help plan and structure the development of a theory about the causes of such a phenomenon in conjunction with a matching ABM. We argue that research about complex social phenomena is still largely fundamental research and therefore an iterative and cyclical development process of both theory and model is to be expected. To better anticipate and manage this process, we provide theoretical and practical guidelines. These may help to identify and structure the domain of candidate explanations for a social phenomenon, and furthermore assist the process of model implementation and subsequent development. The main goal of this paper was to make research on complex social systems more accessible and help anticipate and structure the research process

    Extended homeostatic adaptation: Improving the link between internal and behavioural stability

    No full text
    Abstract. This study presents an extended model of homeostatic adaptation designed to exploit the internal dynamics of a neural network in the absence of sensory input. In order to avoid typical convergence to asymptotic states under these conditions plastic changes in the network are induced in evolved neurocontrollers leading to a renewal of dynamics that may favour sensorimotor adaptation. Other measures are taken to avoid loss of internal variability (as caused, for instance, by synaptic strength saturation). The method allows the generation of reliable adaptation to morphological disruptions in a simple simulated vehicle using a homeostatic neurocontroller that has been selected to behave homeostatically while performing the desired behaviour but non-homeostatically in other circumstances. The performance is compared with simple homeostatic neural controllers that have only been selected for a positive link between internal and behavioural stability. The extended homeostatic networks perform much better and are more adaptive to morphological disruptions that have never been experienced before by the agents.

    Searching for pattern-forming asynchronous cellular automata – An evolutionary approach

    No full text
    Abstract. This paper discusses a class of 2-dimensional asynchronous cellular automata with conservation of mass, for the formation of patterns in groups. The previous study reported a methodology of searching, automatically, for pattern-forming cellular automata using a genetic algorithm; this approach successfully found a few types of pattern-forming rules. The current study is a series of statistical analyses of one of the classes found by the above methodology, with the hope of understanding the mechanisms of the pattern formation. These analyses lead to some basic logic necessary to the pattern formation, but not to enough information to elucidate the whole mechanism of the pattern formation. This result suggests that the existence of unidentified cooperative operations between the different transitions of the cellular automaton rule to carry out the pattern formation.

    Local ultrastability in a real system based on Programmable Springs

    No full text
    Abstract. A way to move gradually towards an objective is by making sure at every step that there is as little deviation as possible while adapting to obstacles. This has inspired us to model a local strategy to eventually attain viability (equilibrium) in a real complex dynamical system, amidst perturbations, using ultrastability to make sure that the path to viability itself is viable. We have tested this approach on a real actuator powered by a technology called “programmable springs ” that allows for real-time non-linear programmable actuation. Our experiment involves a problem in adaptation similar to the polebalancing problem. To solve it, we use ultrastability in a novel way, looking at the viability of dynamical transitions of the system in its phase space, to tweak the local properties of the actuator. Observations show that our approach is indeed effective in producing adaptive behaviour although it still requires further testing in other platforms, thus supporting the original hypothesis that ultrastability can be an effective adaptive mechanism [3] and laying a foundation for a promising new perspective in ultrastable robotics

    An investigation into the evolution of communicative behaviors

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:3292.8855(CSRP 445) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore