182 research outputs found

    The New Nitinol Conformable Self-Expandable Metal Stents for Malignant Colonic Obstruction: A Pilot Experience as Bridge to Surgery Treatment

    Get PDF
    Introduction. Self-expandable metal stents (SEMS) are a nonsurgical option for treatment of malignant colorectal obstruction also as a bridge to surgery approach. The new nitinol conformable stent has improved clinical outcomes in these kinds of patients. We report a pilot experience with nitinol conformable SEMS placement as bridge to surgery treatment in patients with colorectal obstruction. Materials and Methods. Between April and August 2012, we collected data on colonic nitinol conformable SEMS placement in a cohort of consecutive symptomatic patients, with malignant colorectal obstruction, who were treated as a bridge to surgery. Technical success, clinical success, and adverse events were recorded. Results. Ten patients (7 male (70%)), with a mean age of 69.2 ± 10.1, were evaluated. The mean length of the stenosis was 3.6 ± 0.6 cm. Five patients (50%) were treated on an emergency basis. The median time from stent placement to surgery was 16 days (interquartile range 7–21). Technical and clinical success was achieved in all patients with a significant early improvement of symptoms. No adverse events due to the SEMS placement were observed. Conclusion. This pilot study confirmed the important role of nitinol conformable SEMS as a bridge to surgery option in the treatment of symptomatic malignant colorectal obstruction

    Ganymede's Surface Investigation in Support of the Radar for Icy Moon Exploration (RIME) Instrument

    Get PDF
    In order to support the JUICE mission and in particular RIME activities, we have initiated a research effort for understanding the geology of Ganymede

    Over-the-scope clips in the treatment of gastrointestinal tract iatrogenic perforation: a multicenter retrospective study and a classification of gastrointestinal tract perforations

    Get PDF
    AIM: To determine the outcome of the management of iatrogenic gastrointestinal tract perforations treated by over-the-scope clip (OTSC) placement. METHODS: We retrospectively enrolled 20 patients (13 female and 7 male; mean age: 70.6 ± 9.8 years) in eight high-volume tertiary referral centers with upper or lower iatrogenic gastrointestinal tract perforation treated by OTSC placement. Gastrointestinal tract perforation could be with oval-shape or with round-shape. Oval- shape perforations were closed by OTSC only by suction and the round-shape by the “twin-grasper” plus suction. RESULTS: Main perforation diameter was 10.1 ± 4.3 mm (range 3-18 mm). The technical success rate was 100% (20/20 patients) and the clinical success rate was 90% (18/20 patients). Two patients (10%) who did not have complete sealing of the defect underwent surgery. Based upon our observations we propose two types of perforation: Round-shape “type-1 perforation” and oval-shape “type-2 perforation”. Eight (40%) out of the 20 patients had a type-1 perforation and 12 patients a type-2 (60%). CONCLUSION: OTSC placement should be attempted after perforation occurring during diagnostic or thera- peutic endoscopy. A failed closure attempt does not impair subsequent surgical treatment

    Implementation of Radio-Frequency Deflecting Devices for Comprehensive High-Energy Electron Beam Diagnosis

    Get PDF
    In next-generation light sources, high-brightness electron beams are used in a free-electron laser configuration to produce light for use by scientists and engineers in numerous fields of research. High-brightness beams are described for such light sources as having low transverse and longitudinal emittances, high peak currents, and low slice emittance and energy spread. The optimal generation and preservation of such high-brightness electron beams during the acceleration process and propagation to and through the photon-producing element is imperative to the quality and performance of the light source. To understand the electron beam's phase space in the accelerating section of a next-generation light source machine, we employed radio-frequency cavities operating in a deflecting mode in conjunction with a magnetic spectrometer and imaging system for both low (250 MeV) and high (1.2 GeV) electron energies. This high-resolution, high-energy system is an essential diagnostic for the optimization and control of the electron beam in the FERMI light source generating fully transversely and longitudinally coherent light in the VUV to soft x-ray wavelength regimes. This device is located at the end of the linear accelerator in order to provide the longitudinal phase space nearest to the entrance of the photon-producing beam-lines. Here, we describe the design, fabrication, characterization, commissioning, and operational implementation of this transverse deflecting cavity structure diagnostic system for the high-energy (1.2 GeV) regime

    T regulatory cells are markers of disease activity in multiple sclerosis patients

    Get PDF
    FoxP3+ Treg cells are believed to play a role in the occurrence of autoimmunity and in the determination of clinical recurrences. Contradictory reports are, however, available describing frequency and function of Treg cells during autoimmune diseases. We examined, by both polychromatic flow cytometry, and real-time RT-PCR, several Treg markers in peripheral blood mononuclear cells from patients with multiple sclerosis (MS), an autoimmune disease affecting the central nervous system. We found that Tregs, as defined by CD25, CD39, FoxP3, CTLA4, and GITR expression, were significantly decreased in stable MS patients as compared to healthy donors, but, surprisingly, restored to normal levels during an acute clinical attack. We conclude that Treg cells are not involved in causing clinical relapses, but rather react to inflammation in the attempt to restore homeostasis

    Radar Evidence of Subglacial Liquid Water on Mars

    Get PDF
    Strong radar echoes from the bottom of the martian southern polar deposits are interpreted as being due to the presence of liquid water under 1.5 km of ice

    Lunar Gravitational-Wave Antenna

    Get PDF
    Monitoring of vibrational eigenmodes of an elastic body excited by gravitational waves was one of the first concepts proposed for the detection of gravitational waves. At laboratory scale, these experiments became known as resonant-bar detectors first developed by Joseph Weber in the 1960s. Due to the dimensions of these bars, the targeted signal frequencies were in the kHz range. Weber also pointed out that monitoring of vibrations of Earth or Moon could reveal gravitational waves in the mHz band. His Lunar Surface Gravimeter experiment deployed on the Moon by the Apollo 17 crew had a technical failure rendering the data useless. In this article, we revisit the idea and propose a Lunar Gravitational-Wave Antenna (LGWA). We find that LGWA could become an important partner observatory for joint observations with the space-borne, laser-interferometric detector LISA, and at the same time contribute an independent science case due to LGWA's unique features. Technical challenges need to be overcome for the deployment of the experiment, and development of inertial vibration sensor technology lays out a future path for this exciting detector concept.Comment: 29 pages, 17 figure

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    T Regulatory Cells Are Markers of Disease Activity in Multiple Sclerosis Patients

    Get PDF
    FoxP3+ Treg cells are believed to play a role in the occurrence of autoimmunity and in the determination of clinical recurrences. Contradictory reports are, however, available describing frequency and function of Treg cells during autoimmune diseases. We examined, by both polychromatic flow cytometry, and real-time RT-PCR, several Treg markers in peripheral blood mononuclear cells from patients with multiple sclerosis (MS), an autoimmune disease affecting the central nervous system. We found that Tregs, as defined by CD25, CD39, FoxP3, CTLA4, and GITR expression, were significantly decreased in stable MS patients as compared to healthy donors, but, surprisingly, restored to normal levels during an acute clinical attack. We conclude that Treg cells are not involved in causing clinical relapses, but rather react to inflammation in the attempt to restore homeostasis
    • 

    corecore