177 research outputs found

    Overconfident agents and evolving financial networks

    Get PDF
    In this paper, we investigate the impact of agent personality on the complex dynamics taking place in financial markets. Leveraging recent findings, we model the artificial financial market as a complex evolving network: we consider discrete dynamics for the node state variables, which are updated at each trading session, while the edge state variables, which define a network of mutual influence, evolve continuously with time. This evolution depends on the way the agents rank their trading abilities in the network. By means of extensive numerical simulations in selected scenarios, we shed light on the role of overconfident agents in shaping the emerging network topology, thus impacting on the overall market dynamics

    Partial containment control over signed graphs

    Get PDF
    In this paper, we deal with the containment control problem in presence of antagonistic interactions. In particular, we focus on the cases in which it is not possible to contain the entire network due to a constrained number of control signals. In this scenario, we study the problem of selecting the nodes where control signals have to be injected to maximize the number of contained nodes. Leveraging graph condensations, we find a suboptimal and computationally efficient solution to this problem, which can be implemented by solving an integer linear problem. The effectiveness of the selection strategy is illustrated through representative simulations

    Steering opinion dynamics via containment control

    Get PDF
    In this paper, we model the problem of influencing the opinions of groups of individuals as a containment control problem, as in many practical scenarios, the control goal is not full consensus among all the individual opinions, but rather their containment in a certain range, determined by a set of leaders. As in classical bounded confidence models, we consider individuals affected by the confirmation bias, thus tending to influence and to be influenced only if their opinions are sufficiently close. However, here we assume that the confidence level, modeled as a proximity threshold, is not constant and uniform across the individuals, as it depends on their opinions. Specifically, in an extremist society, the most radical agents (i.e., those with the most extreme opinions) have a higher appeal and are capable of influencing nodes with very diverse opinions. The opposite happens in a moderate society, where the more connected (i.e., influential) nodes are those with an average opinion. In three artificial societies, characterized by different levels of extremism, we test through extensive simulations the effectiveness of three alternative containment strategies, where leaders have to select the set of followers they try to directly influence. We found that, when the network size is small, a stochastic time-varying pinning strategy that does not rely on information on the network topology proves to be more effective than static strategies where this information is leveraged, while the opposite happens for large networks where the relevance of the topological information is prevalent

    The evolving cobweb of relations among partially rational investors

    Get PDF
    To overcome the limitations of neoclassical economics, researchers have leveraged tools of statistical physics to build novel theories. The idea was to elucidate the macroscopic features of financial markets from the interaction of its microscopic constituents, the investors. In this framework, the model of the financial agents has been kept separate from that of their interaction. Here, instead, we explore the possibility of letting the interaction topology emerge from the model of the agents' behavior. Then, we investigate how the emerging cobweb of relationship affects the overall market dynamics. To this aim, we leverage tools from complex systems analysis and nonlinear dynamics, and model the network of mutual influence as the output of a dynamical system describing the edge evolution. In this work, the driver of the link evolution is the relative reputation between possibly coupled agents. The reputation is built differently depending on the extent of rationality of the investors. The continuous edge activation or deactivation induces the emergence of leaders and of peculiar network structures, typical of real influence networks. The subsequent impact on the market dynamics is investigated through extensive numerical simulations in selected scenarios populated by partially rational investors

    In vitro cultured progenitors and precursors of cardiac cell lineages from human normal and post-ischemic hearts.

    Get PDF
    The demonstration of the presence of dividing primitive cells in damaged hearts has sparked increased interest about myocardium regenerative processes. We examined the rate and the differentiation of in vitro cultured resident cardiac primitive cells obtained from pathological and normal human hearts in order to evaluate the activation of progenitors and precursors of cardiac cell lineages in post-ischemic human hearts. The precursors and progenitors of cardiomyocyte, smooth muscle and endothelial lineage were identified by immunocytochemistry and the expression of characteristic markers was studied by western blot and RT-PCR.The amount of proteins characteristic for cardiac cells (alpha-SA and MHC, VEGFR-2 and FVIII, SMA for the precursors of cardiomyocytes, endothelial and smooth muscle cells, respectively) inclines toward an increase in both alpha-SA and MHC. The increased levels of FVIII and VEGFR2 are statistically significant, suggesting an important re-activation of neoangiogenesis. At the same time, the augmented expression of mRNA for Nkx 2.5, the trascriptional factor for cardiomyocyte differentiation, confirms the persistence of differentiative processes in terminally injured hearts. Our study would appear to confirm the activation of human heart regeneration potential in pathological conditions and the ability of its primitive cells to maintain their proliferative capability in vitro. The cardiac cell isolation method we used could be useful in the future for studying modifications to the microenvironment that positively influence cardiac primitive cell differentiation or inhibit, or retard, the pathological remodeling and functional degradation of the heart

    Flatfoot in children: anatomy of decision making

    Get PDF
    Concern about a child’s foot posture is a common reason for frequent consultations for an array of health care professionals; sports medicine specialists are often the first to recognize and advise on foot pathology. In the decision making process, it is essential to distinguish between the different types of flatfoot deformity: paediatric or adult, congenital or acquired, flexible or rigid. Although flatfoot in children is a common finding, evidence for the techniques of the reliable and reproducible assessment of the foot posture is scant. This general review presents the factors involved in the forming and supporting of the foot arches, discusses the protocols useful in the evaluation of the foot posture, and indicates how to differentiate between flatfoot cases needing treatment and cases that need only reassurance

    Human Cardiac Progenitor Cell-Derived Extracellular Vesicles Exhibit Promising Potential for Supporting Cardiac Repair in Vitro

    Get PDF
    Although human Cardiac Progenitor Cells (hCPCs) are not retained by host myocardium they still improve cardiac function when injected into schemic heart. Emerging evidence supports the hypothesis that hCPC beneficial effects are induced by paracrine action on resident cells. Extracellular vesicles (EVs) are an intriguing mechanism of cell communication based on the transport and transfer of peptides, lipids, and nucleic acids that have the potential to modulate signaling pathways, cell growth, migration, mand proliferation of recipient cells. We hypothesize that EVs are involved in the paracrine effects elicited by hCPCs and held accountable for the response of the infarcted myocardium to hCPC-based cell therapy. To test this theory, we collected EVs released by hCPCs isolated from healthy myocardium and evaluated the effects they elicited when administered to resident hCPC and cardiac fibroblasts (CFs) isolated from patients with post-ischemic end-stage heart failure. Evidence emerging from our study indicated that hCPC-derived EVs impacted upon proliferation and survival of hCPCs residing in the ischemic heart and regulated the synthesis and deposition of extracellular-matrix by CFs. These findings suggest that beneficial effects exerted by hCPC injection are, at least to some extent, ascribable to the delivery of signals conveyed by EVs
    • …
    corecore