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Abstract— In this paper, we deal with the containment control
problem in presence of antagonistic interactions. In particular,
we focus on the cases in which it is not possible to contain
the entire network due to a constrained number of control
signals. In this scenario, we study the problem of selecting the
nodes where control signals have to be injected to maximize the
number of contained nodes. Leveraging graph condensations,
we find a suboptimal and computationally efficient solution to
this problem, which can be implemented by solving an integer
linear problem. The effectiveness of the selection strategy is
illustrated through representative simulations.

I. INTRODUCTION

The problem of coordinating the dynamics of ensembles
of agents connected through static or dynamic network
topologies has been deeply investigated in the last decades.
In particular, departing from the pioneering work of DeGroot
in the Seventies [1], substantial research effort has been
devoted to unravel the mechanisms leading to the emergence
of consensus in networks of simple integrators. The problem
has been thoroguhly studied both in continuous and discrete
time [2], on undirected or directed graphs, and in presence
of delays [3]. Consensus has been also investigated in a
leader-following setting, in which one node, the leader, drives
a network of linear systems towards a desired value [4].
Achieving consensus is not the only possible control goal in
multi-agent systems. Indeed, in applications of networks of
autonomous agents, the objective is often to contain a group
of agents within a certain area, e.g. not to enter populated
areas. Motivated by that, Ji and coworkers introduced the so-
called containment control problem, where multiple leaders
have to drive a group of mobile agents within a desired
convex polytope [5]. Later works have further analyzed this
problem to account for the presence of directed interactions
[6], possible switches in the network topology [7], [8],
uncertainty [9], and higher-order dynamics [10], [11].
As noted by Altafini in [12], most of the works on consensus
and containment control relies on the assumption of coop-
eration among the agents in the system, as all the network
edges are assumed to have positive weights. However, in
social network theory, besides cooperative interactions, also
antagonism is commonly observed [13], [14]. A natural
setting to describe such interactions is to characterize the
network topology through the so-called signed graphs, intro-
duced in the Fifties by Harary [15] to model the disliking,
indifference, and liking sentiments described by psycholo-
gists in social interactions. These considerations motivated a
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bulk of studies on consensus and containment control over
signed graphs [12], [16]–[22]. In particular, in [12] the author
showed that when the graph is balanced, bipartite consensus
can be achieved, that is, the states of all the agents will have
the same modulus, but possibly different signs. These results
were later extended to the case of non-strongly connected
graphs and discrete-time dynamics [16]–[20]. Recently, a
first definition of containment control over signed graphs was
given in [21]. Specifically, the author says that a network is
contained when the states of its nodes converge towards the
convex hull spanned by the leaders and by their symmetric
trajectories. Assuming continuous-time dynamics, conditions
guaranteeing the achievement of full network containment
were achieved. Similar results were obtaibed in [22] for the
case of generic linear heterogeneous node dynamics.
However, in large directed networks where the number of
control signals is constrained, it is seldom possible to contain
the whole network, as it would require to directly inject a
control input in every root strongly connected component
(RSCC) of the network. Therefore, in this paper, we for-
mulate the partial containment control problem over signed
graphs. When the number of control inputs is limited, our
goal is to maximize the number of nodes we asymptotically
contain. Exploiting two graph condensations, we first derive
sufficient conditions to contain the atom of our network,
that is, a SCC, and then devise a suboptimal algorithm
to efficiently deploy the control inputs. Interestingly, this
strategy only relies on information on the network topology
and not on the initial state of the nodes, which might be non-
accessible. Moreover, we illustrate how the algorithm can be
translated into an integer linear program, and we illustrate
its effectiveness on a representative numerical testbed.

II. MATHEMATICAL PRELIMINARIES

A. Signed graphs

A directed signed graph G consists of an unsigned directed
graph U = {V, E} and a partial mapping σ : E → {+,−}
[23]. An edge (i, j) ∈ E is called positive if σ(i, j) = {+},
while it is called negative otherwise. We associate to G a
weighted adjacency matrix A, whose ij-th element aij is
positive if (i, j) ∈ E ∧ σ(i, j) = {+}, negative if (i, j) ∈
E ∧ σ(i, j) = {−}, and zero otherwise.
Throughout the manuscript, we shall consider signed graphs
fulfilling the following assumption.
Assumption 1: |aii| > 0 and

∑n
j=1 |aij | = 1, for all i =

1, . . . , n.
Definition 1: A directed signed graph G is structurally bal-
anced if there exists a bipartition {V1,V2} of V , such that
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aij ≥ 0, for all (i, j) ∈ Vθ and aij ≤ 0 for all (i ∈ Vθ, j ∈
V \ Vθ), for all θ ∈ {1, 2}. G is unbalanced otherwise.
Notice that every unsigned graph is structurally balanced
with V1 = V and V2 = ∅. Following [19] and [24], we
define the enlarged graph associated to G as follows:
Definition 2: The enlarged graph G̃ = {Ṽ, Ẽ} associated
to G is a (unsigned) directed graph of 2n nodes (Ṽ =
{1, . . . , n, 1−, . . . , n−}) and all positive edges related to that
of G through the adjacency matrix Ã, whose elements are

ãij = ãi+N,j+N = max(0, aij) ≥ 0,

ãi+N,j = ãi,j+N = max(0,−aij) ≥ 0,

for i, j = 1, . . . , N .

B. Some useful lemmata

Lemma 1: Let us consider a reducible matrix in normal
form:

M =


M1 0 0 0

...
. . . . . .

...
0 · · · Mq 0
R1 · · · Rq S

 ,
where Mj , j = 1, . . . , q, are semi-convergent irreducible
matrices and S is a convergent matrix. We then have

lim
k→+∞

Mk =


M∞1 0 0 0

...
. . . . . .

...
0 · · · M∞q 0
· · · R∗j · · · 0

 ,
where M∞j = limk→+∞Mk

j and R∗j = (I − S)−1RjM
∞
j .

Furthermore, if λ = 1 is an eigenvalue of Mj , then M∞j =
ψjξ

T
j , where ξj and ψj are the left and right eigenvectors

associated to λ = 1, respectively, scaled so that ξTj ψj = 1.
Lemma 2: [19] Given a strongly connected signed graph
G and its associated enlarged graph G̃, G is structurally
balanced if and only if G̃ is disconnected and composed of
two strongly connected components.
Lemma 3: [19] Given a strongly connected signed graph
G and its associated enlarged graph G̃, G is structurally
unbalanced if and only if G̃ is strongly connected.

C. Graph condensations

Definition 3: Given any pair of vertex sets {V,V ′}, with
|V| ≥ |V ′|, any (single-valued) function f : V → V ′ is
called a condensing function. Moreover,

Vi := {t ∈ V : f(t) = i}, i ∈ V ′.
Definition 4: Let us consider a graph G = (V, E), a vertex
set V ′, a condensing function f : V → V ′, and the edge set
E ′ = {(i ∈ V ′, j ∈ V ′), i 6= j|∃(t, u) ∈ E|f(t) = i, f(u) =
j}. The graph G′ = {V ′, E ′} is the condensation of G induced
by f .
Definition 5: The classic condensation Gc of a graph G is
the condensation of G induced by the condensing function
f c that associates each node of G to the strongly connected
component it belongs to.
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Fig. 1. The correspondences between the various condensations and their
decomposition in levels are illustrated with reference to a sample signed
graph G.

Now, we introduce a novel condensation of a graph G,
denoted as the signed condensation Gs of G:
Definition 6: The signed condensation Gs of a graph G is
the condensation of G induced by the condensing function
fs that associates each node of G to the strongly connected
component of G̃ it belongs to.
Notice that if G is unsigned, then Gc = Gs. The correspon-
dences between the diverse condensations are illustrated in
Figure 1. Moreover, we observe that the signed condensation
Gs is a directed acyclic graph. From now on, we call
directed acyclic condensation every condensation that is a
directed acyclic graph (DAG). We can now give the following
definition.
Definition 7: Let us consider a directed acyclic condensation
Gd = (Vd, Ed) of a graph G = (V, E) induced by a
condensing function fd. Node i ∈ Vd belongs to level 1
if @j : (j, i) ∈ Ed. Furthemore, a node i ∈ Vd belongs to the
l(> 1)-th level of Vd if

∀(j, i) ∈ Ed; j ∈ level p < l.

Moreover, the total number of levels is denoted by `d and
the number of nodes of Gd in a given level l is ndl .
Given a directed acyclic condensation Gd of G, we associate
to each node in Vd a pair of indexes (a, b): the first will
indicate the level the node belongs to and the second its
(random) ranking in that level, see Figure 1. Accordingly,
we can define a function gd that associates to each (a, b) the
corresponding node of Vd. Now, we can partition (and sort)
the set of nodes of V as

V = {Vd11, . . . ,Vd1nd1 , . . . ,V
d
`dnd`
}, (1)

where
Vdij := {t ∈ V : fd(t) = gd(i, j)}. (2)

Moreover, we denote Gdij ⊆ G the subgraph induced by
Vdij . Consequently, we indicate by Gcij a strongly connected
component (SCC) of G, for all i = 1, . . . , `c, j = 1, . . . , nci ,
and that Gc11, . . . ,Gc1h, . . . ,G1nc1

are its nc1 ≥ 1 aperiodic
root strongly connected components (RSCCs). Notice that
the number of levels of Gc, G̃c and Gs is the same, that



is, `c = ˜̀
c = `s := `. Moreover, for all l = 1, . . . , `,

ncl ≤ nsl ≤ ñcl . Moreover, any SCC of G can be classified as
of

a. type 1 if it has no negative weights;
b. type 2 if it has at least one negative weight and is

structurally balanced;
c. type 3 if it has at least one negative weight and is

structurally unbalanced.
Remark 1: For all h = 1, . . . , nl, l = 1, . . . , `, we associate
to the h-th node of the l-th level of Gc

• the h-th (h̃-th) and the h∗-th (h̃∗-th) nodes of the l-th
level of Gs (G̃c) such that Vclh = Vslh∪Vslh∗ ⊂ Ṽclh̃∪Ṽ

c
lh̃∗
,

if Gclh is of type 1 or type 2;
• the h-th (h̃-th) node of the l-th level of Gs such that
Vclh = Vslh ⊆ Ṽclh̃, if Gclh is of type 3.

Moreover, we associate to the h̃-th node of the l-th level of
G̃c the h-th node of the l-th level of Gc such that

Ṽc
lh̃
∩ Vclh 6= ∅.

These associations between the nodes of the condensations
are clearly illustrated in Figure 1.

III. PROBLEM FORMULATION

Let us consider a signed graph G with n nodes and associated
weighted adjacency matrix A. A subset C ⊂ V comprises
the m leaders (sometimes also denoted pinners [25]–[28],
depending on the context), that is, nodes that have no
incoming links. Denoting xi ∈ R the state of the i-th node,
the dynamics over the signed graph G are described by

xi(k+ 1) = xi(k) +

N∑
j=1

aij (xj(k)− sign(aij)xi(k)) , (3)

for all i = 1, . . . , n, or, equivalently, by

x(k + 1) = Ax(k),

where x = [x1, . . . , xn]T is the vector of the nodes’ states.
In this paper, we focus on the case in which

|aij | =
{ 1
|Ni| if j ∈ Ni,
0 otherwise,

with Ni = {j ∈ V : (j, i) ∈ E} being the set of neighbors’ of
i, but the results given in the following can be easily extended
to alternative rules for computing aij that are consistent with
Assumption 1.
Notice that xi(k + 1) = xi(k) = xi(0) for all i ∈ C.
From [21], we give the following definition of containment
in signed graphs.
Definition 8: A node i ∈ V − C is asymptotically signed
contained when

lim sup
k→+∞

|xi(k)| ≤ max
j∈C
|xj(0)| , (4)

Definition 9: Network (3) is q-partially signed contained if
there exist a subset Q ⊆ V of cardinality q such that all the
nodes in Q are asymptotically contained. If q = n−m, then
network (3) is signed contained.

Let us denote by L the set of nodes directly controlled by
the leaders, that is,

L = {i ∈ V | ∃ aji > 0, j ∈ C} .

Then, we can define K(L) := {i ∈ V | eq. (4) holds},
as the set of asymptotically contained nodes. For a given
cardinality, say d, of the set L, the partial containment control
problem consists in finding optimal selection L∗(d) that
maximizes the number of contained nodes, that is,

L∗(d) = arg max
L
|K(L)|

s.t. |L| = d.
(5)

We observe that the numerical solution of this problem for
d > 1, although conceptually simple, would require to
test for a number of alternative selections of the pinned
nodes that is in the order of n!. An extensive search of
the optimal solution is therefore computationally prohibitive
even for relatively small networks. In what follows, we
propose a computationally efficient heuristic approach to find
a suboptimal solution of problem (5).

IV. CONVERGENCE ANALYSIS

Before giving our main results, we give some relevant
notation. Specifically, for the h-th SCC of the l-th level, we
introduce the stack vector xlh of the states {xi}i∈Vclh , and
the vector

ylh(k) :=
[
xlh(k)T ,−xlh(k)T

]T
. (6)

If Gclh is of type 2, yhl can be viewed as the vector containing
all the states of the nodes in Ṽc

lh̃
∪Ṽc

lh̃∗
. From Lemma 2, G̃lh

is composed by two disconnected SCCs. Therefore, we can
find a permutation matrix Tlh such that, defining zlh(k) =
Tlhylh(k) = [zlh̃(k)T zlh̃∗(k)T ]T , we can write

zlh(k + 1) =

[
Zlh̃ 0

0 Zlh̃∗

]
zlh(k), (7)

where Zlh̃ and Zlh̃∗ are the submatrices extracted from Ã

associated to the nodes in Ṽc
lh̃

and in Ṽc
lh̃∗

. In what follows,
for any node h of level l in Gc corresponding to a type 1 SCC
of G, we indicate with ξlh the left eigenvector associated to
the unique eigenvalue λ = 1 of block Alh of matrix A in eq.
(3), while, given a type 2 SCC Gclh, we denote ξ̃lh̃ (ξ̃lh̃∗ ) the
left eigenvector associated to the unique eigenvalue λ = 1
of Zlh̃ (Zlh̃∗ ).
By exploiting the condensations introduced in Section II-C,
here we explore the network level by level, to finally provide
an algorithm that computes the steady-state configuration of
any SCC in the graph. Let us start by characterizing the
asymptotic behaviors of the nodes in the RSCCs (i.e. in the
level 1 of Gc).
Theorem 1: For all h = 1, . . . , nc1,
• if Gc1h is of type 1, then

lim
k→+∞

xi(k) = ξT1hx1h(0), ∀i ∈ Vc1h (8)



• if Gc1h is of type 2, the SCC polarizes and

lim
k→+∞

xi(k) = ξ̃T
1h̃
z1h̃(0) ∀i ∈ Vs1h

lim
k→+∞

xi(k) = −ξ̃T
1h̃∗
z1h̃∗(0) ∀i ∈ Vs

1h̃∗

(9)

• if Gc1h is of type 3, then

lim
k→+∞

x1h(k) = 0. (10)

Sketch of the proof: the proof exploits the fact that
the dynamics of the nodes in an SCC of the first level are
independent of the dynamics of the nodes not belonging to
that SCC. Accordingly, the steady-state values of the nodes
in type 1 SCCs can be studied using classic results on
consensus, while that of the nodes in type 2 or type 3 SCCs
can obtained leveraging results on balanced and unbalanced
signed graphs, respectively. �

Next, we define the upstream and the downstream of a node
of a DAG.
Definition 10: For each node i of a directed acyclic graph,
its upstream (downstream) is the set of nodes, including i
itself, from which i is reachable (which i can reach) through
a directed path. Moreover, we denote with ΥG

d

lh the upstream
of the node lh of Gd.
For any node lh of Gc, δi(lh) is the number of nodes of the i-
th level of Gc that are in the upstream of lh, for i = 1, . . . , l−
1. Furthermore, we define the set Ji(lh) := {j1, . . . , jδi} as
the set of nodes of level i that are in the upstream of node
lh, i = 1, . . . , l−1. Set Ji(lh) can be partitioned as follows:

Ji(lh) = {Ji1(lh),Ji2(lh),Ji3(lh)} ,

where Jit(lh) = {α ∈ Jit(lh) | Gciα is type t}, t = 1, 2, 3.
We now give an algorithmic procedure to compute the
steady-state values of the states of the nodes belonging to
a generic SCC of G.
Theorem 2: For all l = 2, . . . , `, h = 1, . . . , ncl , the steady-
state values x̄lh of the nodes in Gclh can be computed through
the following algorithm

x̄1p =


[

+ξ̃T1p̃z1p̃(0)1|Vs
1p̃
|

−ξ̃T1p̃z1p̃∗(0)1|Vs
1p̃∗ |

]
if Gc1p is of type 1

ξT1px1p(0)1|Vc1p| if Gc1p is of type 2
0 if Gc1p is of type 3

,

∀p ∈ J1(hl),

x̄sp = (I −Asp)−1
s−1∑
λ=1

∑
i∈Jλ(sp)

Asp,λix̄λi,

∀s = 2, . . . , l, p ∈ Js(hl).
(11)

Sketch of the proof: the algorithm initialization is a
direct application of Theorem 1, while the expression of x̄sp
can be derived by induction. �

Corollary 1: If ∪n
c
1

h=1V1h = C, then network (3) is signed
contained.

Proof: the thesis directly follows from Theorems 2.

The above corollary means that the network is signed con-
tained if the leaders set C is connected to each of the f
SCCs of the graph of the followers, that is, the subgraph F
induced by the node set V−C. This implies that, to guarantee
signed containment, the number of outgoing edges d from
the leaders has to be equal or higher than f . The following
corollary gives sufficient conditions guaranteeing asymptotic
containment of a given SCC of G.
Corollary 2: For all l=2, . . . , `, h=1, . . . , nlc, the h-th SCC
of the l-th level of G is signed contained if ∪k∈ΥG

c

lh
V1k ⊆ C.

Proof: The dynamics of the nodes in any SCC of the
network are decoupled by those of the nodes that are not in
its upstream. Then, the thesis follows from Theorem 2.
In other words, this means that if the RSCCs of the upstream
of the considered SCC are (a subset of) the network leaders,
then the SCC is contained.

V. AN ALGORITHM FOR CONTROL DESIGN

Given a network topology G, the nodes that will be asymp-
totically signed contained may be more than those of the
SCCs fulfilling the assumption of Corollary 2. However, this
will depend on the initial conditions of the RSCCs of G that
are not the network leaders. Therefore, if one aims at finding
the optimal solution for problem (5), then the knowledge of
the initial conditions of all the followers would be necessary
for the leaders. In absence of this information, a suboptimal
solution maximizing the number of nodes that are guaranteed
to be signed contained can be found. Specifically, rather then
solving problem (5), we will focus on finding the optimal
solution of the following problem:

L̂(d) = arg max
L
|φ(L)|

s.t.
|L| = d,

(12)

where φ(L) is the subset of nodes of G belonging to SCCs
fulfilling the assumptions of Corollary 2.
Contrary to problem (5), the solution of this problem does not
require a full exploration of the feasible solutions, and can be
translated into an integer linear program (ILP), by adapting
the procedure presented in [29]. Indeed, by introducing the
condensation Fc of the subgraph F of the followers, the
algorithm solving problem (12) consists of the following
steps:
(a) build a new graph G = {V, E} as follows:

• add to V the set of roots ri of Fc and all the non-
roots γi of Fc that are in the downstream of no more
than d roots ri;

• for all pairs γi, rj ∈ V , add an edge (γi, rj) to E ,
with associated binary variable yij , if in Fc, γi is
in the downstream of rj ;

• add an additional node, π, representing the leader
set C, and connect it to all the rj in V by adding
a set of edges (rj , π) to E , with associated binary
variable yjπ;

(b) associate to all edges of the graph Ḡ the following
weights:



• wij = |γi|, ∀i, that is, all edges entering the i-th
node γi have a weight equal to the number of nodes
in the SCC γi;

• wjπ = |rj |, ∀j, that is, all edges entering the j-th
root rj have a weight equal to the number of nodes
in the SCC rj ;

(c) solve the following ILP:

max
y

∑
i

∑
j

wijyij +
∑
j

wjπyjπ (13)

s.t.∑
j

yjπ = d (14)∑
i

yij ≤ kout
j yjπ ∀j (15)

kin
i

∑
j

yij ≤
∑
j|∃yij

yjπ ∀i (16)

yij , yjπ ∈ {0, 1} ∀i, j (17)

where kin
i and kout

i are the in- and out-degree of the i− th
node of graph G, respectively.
Let us briefly illustrate the procedure outlined above. We first
create a new graph G, whose nodes are either RSCC of the
subgraph of the followers, or SCCs in the downstream of
such RSCCs. Each node representing a RSCC is connected
to the SCCs in its downstream. Notice that we do not include
any node representing a SCC that has more than d RSCCs in
its upstream, and thus cannot be guaranteed to be contained
according to Corollary 2. Then, we add an extra node π to
G representing the set of leaders, and we connect it to all
nodes ri representing the RSCCs. Finally, we associate to
each edge in G a weight equal to the number of nodes in
the (R)SCC it points to. The solution of the ILP in (13)-
(16) is then equivalent to determine the RSCCs that have
to be directly controlled, together with the corresponding
SCCs that are guaranteed to be contained. Namely, SCC
γi is contained for all possible initial conditions if there
exists a j such that yij = 1, and RSCC rj will be directly
controlled if yjπ = 1. Accordingly, the objective function to
be maximized in (13) represents the total number of nodes
that we can guarantee to contain according to Corollary 2.
The constraint (14) guarantees that the directly controlled
nodes are d, while (15) that all the contained nodes are in
the downstream of (some of) the leaders. Finally, eq. (16)
imposes that the nodes of an SCC are contained only if
a node in each of the RSCCs in their upstream is directly
controlled by one of the leaders.
Remark 2: Notice that our algorithm only determines which
RSCCs of F have to be connected to the set of leaders.
Indeed, the selection of the specific node of each RSCC,
and the leader connected to it, is indifferent to the objective
function of problem (12). Therefore, this selection will be
performed randomly in the numerical example that follows.
Clearly, the selection may indeed impact on both the con-
vergence rate and on the width of the convex hull in which
the followers are asymptotically contained. However, the

𝛱
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Fig. 2. Graph Ḡ associated to the signed graph G in the numerical example.
The (R)SCCs of G that are guaranteed to be asymptotically contained are
depicted in blue, while the remaining (R)SCCs are in black.

investigation of these aspects goes beyond the scope of the
present work.

Numerical example

We consider a signed graph G of N = 1500 nodes distributed
over 4 levels and 15 SCCs, whose dynamics follow equation
(3). We assume that only d = 2 control inputs can be
deployed by the 3 leaders of the network. Following the
steps of the algorithm, we first build the graph Ḡ, which
is depicted in Figure 2. Then, we solve the ILP (13)-(16)
and find that the leaders should directly control the RSCCs
denoted by r2 and r3 in Figure 2 to maximize |φ|, that is,
the number of followers that are contained regardless of the
initial conditions of the network. The optimum value of the
objective function of problem (12) is |φ(L̂(2))| = 508. To
validate our results, we simulated the system with the same
leaders’ states ([−1, 0.5, 1]T ) and two different sets of initial
conditions, randomly selected from a uniform distribution in
[−20; 20]. In both cases, the nodes in φ(L̂(2)) (depicted in
blue in Figure 3) are asymptotically contained. Then, depend-
ing on the specific selection of the initial conditions, further
nodes of the network might be asymptotically contained, as
in the two simulations |K(L̂(2))| is equal to 516 and 843,
respectively, see Figure 3.

VI. CONCLUSION

In this paper, we tackled the containment control problem
in a multi-agent discrete-time system where the interactions
can be both cooperative and antagonistic. In particular, we
focused on the case in which the containment of the entire
network is prohibited by constraints on the number of control
inputs the leaders can exert on the follower. The partial con-
tainment control problem was then defined as searching for
the optimal deployment of the available control inputs so as
to maximize the number of contained nodes. A preliminary
graphical study, based on two alternative condensations of
the original graph, allowed the derivation of the conditions
guaranteeing the containment of the atomic element of a
directed network, that is, a strongly connected component.



Fig. 3. Two simulations of the network dynamics with leader states
xC=[−1, 0.5, 1]T . The two simulations differ for the initial conditions of
the followers, which are randomly selected from a uniform distribution in
[−10; 10]. The dotted black lines delimit the region where the leader aim
at containing the followers, whose trajectories are in blue if they belong
to SCCs fulfilling the assumptions of Corollary 2, while they are in green
otherwise. In the top panel, the total number of asymptotically contained
nodes is 516, while they are 843 in the bottom panel.

Leveraging the convergence analyses, an algorithm for max-
imizing the number of followers we can guarantee to contain
was built. Our solution strategy was translated into an integer
linear program, and its effectiveness was demonstrated on a
testbed examples. Future work will extend this analysis to
alternative scenarios in which, for instance, the leaders may
not cooperate and have contrasting goals.
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