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Background
Who influences whom? How do leading individuals steer the opinions of the others so 
to gain influence in a group, subsequently increasing their decision power? How can 
we describe the process of opinion formation? These are pressing open questions that a 
wide and interdisciplinary research effort is trying to address in the last decades [1–17]. 
Sociologists and psychologists investigate the cognitive implications of the social inter-
actions on opinion formation [1], whether and how a heterogeneous group can reach 
agreement on an issue [2], and which are the factors determining the convincing power 
of a social group on a subjective opinion [17]. The economists wonder how the spread 
of an opinion among interacting individuals may contribute to trigger financial crises 
and cascades [4–6], and whether it can be employed in speculative manners [7]; with 
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In this paper, we model the problem of influencing the opinions of groups of individu-
als as a containment control problem, as in many practical scenarios, the control goal is 
not full consensus among all the individual opinions, but rather their containment in a 
certain range, determined by a set of leaders. As in classical bounded confidence mod-
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extremist society, the most radical agents (i.e., those with the most extreme opinions) 
have a higher appeal and are capable of influencing nodes with very diverse opinions. 
The opposite happens in a moderate society, where the more connected (i.e., influen-
tial) nodes are those with an average opinion. In three artificial societies, characterized 
by different levels of extremism, we test through extensive simulations the effective-
ness of three alternative containment strategies, where leaders have to select the set of 
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a similar goal, some politicians aim to manipulate public opinion to gain and reinforce 
their power [8] or seek for an optimal opinion control strategy in the campaign problem 
[18].

Research on opinion dynamics also benefitted from the contribution of physicists, 
mathematicians, and engineers [9] interested in the study of complex systems. Starting 
from [10], where the first model of opinion dynamics in a probabilistic framework was 
presented, opinion dynamics models were designed by using an analogy with the Ising 
model in statistical mechanics [11–13].

An alternative approach is offered by sociodynamics [14, 15], which aims at building 
mathematical models of a variety of different phenomena within the framework of social 
sciences [19, 20]. Here, the opinion is modeled as a (possibly vectorial) state variable and 
the goal is to understand the nonlinear dynamics leading the system’s state to consensus 
or to fragmentation on an issue [9]. In this perspective, a possible framework stems from 
the consensus problem formulated and solved in the pioneering work of DeGroot [16] 
and Friedkin [21], which stimulated a bulk of both theoretical and application-oriented 
research [22–27]. Moreover, inspired by the collective behavior of animal groups [28], as 
fish schools or birds flocking, leader–follower consensus protocols were developed and 
analyzed [22, 29, 30]. This setting, which is strictly related to pinning control in complex 
networks [31–36], well suits opinion dynamics [37, 38], where the aim is to investigate 
whether the state of the system (the collective opinion) reaches consensus at the leaders’ 
states. However, in the presence of multiple leaders with contrasting opinions, typically 
their common final goal is not anymore opinion consensus on a specific value (e.g., the 
opinion of a given leader), but rather the containment of the followers’ opinion in a given 
range (e.g., they belong to the same coalition and want to win a referendum or an elec-
tion) [39, 40].

Starting from the above considerations, and combining the dynamical systems 
approach with complex networks theory [41–43], we explore the relationship between 
opinion dynamics and containment control [39, 44, 45]. In control systems theory, the 
latter refers to a consensus-like problem in which multiple leaders, interacting with the 
other agents (the followers) through an influencing network, aim to drive and main-
tain the followers in the convex hull spanned by their states (their opinions) [45, 46]. 
The convex hull then becomes the mathematical representation of the opinion range, 
in which we want to contain the opinions of the followers. In addition, inspired by the 
bounded confidence models [47–49], in which an agent does not interact with agents 
whose opinion is too far from his, we propose an alternative model of opinion dynam-
ics in terms of containment control, where multiple leaders populate the network and 
the communication is subject to a proximity rule: at each instant, node i will influence 
node j only if the distance between their opinion is below a state-dependent threshold. 
Departing from classical bounded confidence models, we consider alternative proximity 
thresholds, aiming at mimicking different kinds of societies permeated by different levels 
of extremism. Indeed, the observation of the potential consequences of the spreading of 
zealotry (e.g., the diffusion of terrorism) [50–52] spurred us to investigate how societies 
with different levels of extremism could react to the presence of multiple leaders.

In particular, in an extremist society, the most radical agents (i.e., those with the most 
extreme opinions) have a higher appeal and are capable of influencing nodes with very 
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diverse opinion. The opposite happens in a moderate society, where the more connected 
(i.e., influential) nodes are those with an average opinion. Finally, we call neutral a soci-
ety which is neither extremist nor moderate. Therefore, to evaluate how the leaders can 
control each of these artificial societies, we present and numerically compare different 
kinds of containment strategies, that is, different ways in which the leaders try to influ-
ence the opinion of the followers. In particular, some of them leverage information on 
the network topology (as for instance in [53]), while others benefit from the possibility of 
changing the set of followers the leaders try to influence.

We find that static control strategies only marginally benefit from the knowledge of the 
topological properties of the network. On the other hand, we observe a relevant increase 
of the performance in terms of the fraction of contained followers when the leaders 
are allowed to rewire the network of potential connection with the followers. In other 
words, if a leader can change at every time instant the followers they seek to directly 
influence, they become able to drag more opinions in the range of interest defined by the 
convex hull of the their opinion.

The remainder of our work is organized as follows: first, we model the problem of 
steering the opinion in a group of individuals as a containment control problem,  and 
then we introduce the alternative containment strategies to control three artificial socie-
ties with their respective proximity rules. Afterwards, we describe the numerical setup 
and illustrate the results. Finally, we draw the conclusions and identify future directions.

Containment control and opinion dynamics
Here, our aim is to describe opinion dynamics in the framework of agent-based mod-
eling. More specifically, we consider the case in which selected members of the soci-
ety, that we will call leaders, try to steer the opinions of the other individuals, called 
followers. To this aim, we associate each individual to a node of a time-varying graph 
G(k) = {V , E(k)}, where V is the set of nodes (the individuals) and E(k) is the edge set, 
representing the influence relationships at time k. The set of nodes V is partitioned in 
two non-empty sets L and F  that are the sets of leaders and of followers, respectively. 
We constrain G(k) to be a subgraph of P = {V , Eω}, which describes the potential inter-
action among nodes, with typically Eω ⊂ V × V, as the influence process is selective 
[54–56].

The state of a node, say i, represents the opinion of the i-th individual on a given mat-
ter of interest at time k, and is quantified by a scalar xi(k) ∈ O := [xmin, xmax] ⊂ R, 
where O is the set of possible opinions. The state evolution of node i is given by

where σi(k) = max
{∣

∣Ni(k)
∣

∣, 1
}

, Ni(k) := {j ∈ V | aji(k) = 1} being the in-neighbors set 
of i, with aji(k) being the jith element of the time-varying binary adjacency matrix A(k) 
associated to the interaction graph G(k).

In what follows, we assume that the adjacency matrix A(k) coevolves with the node 
dynamics (see Fig. 1) according to a proximity rule:

(1)xi(k + 1) =







xi(k) if i ∈ L,

xi(k)+
1

σi(k)

�

j∈Ni(k)
(xj(k)− xi(k)) otherwise,
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where ǫ(xi(k)) is a (possibly) state-dependent threshold. Differently from classical 
bounded confidence models [47–49], with which models (1), (2) share the concept of 
confidence level, we have that

1. the interaction among the agents is selective [54]: two agents, say i and j, may interact 
only if (i, j) ∈ Eω;

2. there are opinion leaders, who try to influence the opinion of the others but never 
adjust theirs and

3. aim at containing the opinion of their neighbors in the convex hull of their opinions, 
without requiring the convergence towards a given consensus value.

In particular, point (3) implies that we study the problem of steering the opinions of a 
group of individuals as a containment control problem rather than a leader–follower 
consensus problem. Indeed, while the diffusive protocol well describes the process of 
opinion spreading in a group, it is sometimes unrealistic to assume full cooperation 
among the leaders with the aim of steering the group opinion towards the same asymp-
totic values. Indeed, in presence of polarization, antagonism, speculative behaviors, and 
cognitive biases, ideal cooperation is unrealistic [57], and therefore we allow for the 
existence of multiple leaders with contrasting opinions.

(2)aji(k) =

{

1 if (j, i) ∈ Eω and | xj(k)− xi(k) |≤ ǫ(xi(k)),
0 otherwise,

Fig. 1 Schematic of the coevolving network describing the interplay among the opinion dynamics, the 
proximity threshold, ǫ(x(k)), and the interaction graph, G(k)
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To clarify how point (3), together with points (1) and (2), impacts on the time-vary-
ing network topology, we notice that the binary adjacency matrix Ā(k) associated to the 
potential graph P = {V , Eω} can be decomposed in the following blocks:

where AL→F ∈ R
l×f  describes the possible connection (i.e., direct influence) of the 

leaders on the followers, while AF↔F ∈ R
f×f  describes the possible mutual connections 

among the followers, with l = |L| and f = |F |.
In what follows, we assume AF↔F  to be given and constant, while we will focus on 

the selection of AL→F (k). In other words, in this paper we want to compare alternative 
selections for AL→F (k), given a constraint on

(i.e., on the maximum out-degree of each leader), in terms of their ability in steering the 
opinions of the followers in the convex hull spanned by the leaders. Also, we define the 
set of pinned followers at time k as

To formally state the problem, we first need to give some definitions.

Definition 1 The convex hull Co(S) of a finite set of points S = {x1 , 
. . . , xm} ⊂ R is the minimal convex set containing all points z ∈ S, that is, 
Co(S) = {z =

∑m
i=1 αixi|αi � 0,

∑m
i=1 αi = 1}.

Definition 2 The opinion of the ith follower is asymptotically contained to those of the 
leaders if

where Xl = {xi(0)}i∈L.

Definition 3 Networks (1), (2) achieve q-partial opinion containment if

for some Q ⊆ F  such that |Q| = q. If q = f  (Q = F), full containment is achieved.

Assuming that the maximum out-degree of each leader is constrained, that is, 
dmax
out (k) = d̄ < f , and that the number l of leaders is given, we compare alternative pin-

ning strategies to test whether they can significantly improve the fraction of contained 
followers, φ =

q

f
, if compared with the trivial strategy of randomly picking a constant set 

Ā(k) =

[

0l×l AL→F (k)
0f×l AF↔F (k)

]

,

dmax
out := �AL→F (k)�1

FP(k) =

{

j ∈ F :
∑

i

(AL→F (k))ij > 0

}

.

ci :=

[

lim inf
k→+∞

xi(t), lim sup
k→+∞

xi(k)

]

⊆ Co(Xl),

⋃

i∈Q

ci ⊆ Co(Xl),
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F r
P of pinned nodes, that is, FP(k) = F r

P for all k. This comparison will be made under 
different assumptions on the society, that is, under different assumptions on the possibly 
state-dependent threshold ǫ introduced in Eq. (2).

Containment strategies and society models
Alternative containment strategies

Here, we present two static containment strategies, in which the pinned followers are 
selected at the onset of the simulation, and a time-varying containment strategy, where 
the set of pinned nodes is updated at every time instant.

St.1. Pinning the hubs The set of pinned nodes is static and is composed by the set Fh
P of 

the dmax
out l nodes with highest degree (the hubs), that is, FP(k) = Fh

P for all k.
St.2. Pinning the leaves The set of pinned nodes is static and is composed by the set Fℓ

P 
of the dmax

out l nodes with the lowest degree (the leaves), that is, FP(k) = Fℓ
P for all k.

St.3. Time-varying random pinning Inspired by [32], under this time-varying contain-
ment strategy each leader, at every time instant, randomly pins a set F r

P(k) of dmax
out l 

followers, that is, FP(k) = F r
P(k) for all k.1

As anticipated above, the effectiveness of these containment strategies will be tested 
against the static random strategy

St.0. Static random pinning The set of pinned nodes is static and is composed by the set 
F r
P of the dmax

out l randomly selected nodes, that is, FP(k) = F r
P for all k.

Also, as a further reference, we will consider the case in which the leaders do not try to 
influence any follower, that is, AL→F = 0l×f .

We emphasize that all the containment strategies only determine the set of nodes 
that are potentially influenced by the opinion of the leaders, while the influence will be 
actually exerted only if the proximity condition is fulfilled, and this also depends on the 
selected society model, in agreement with Eq. (2). In other words, we assume that the 
leader can only decide which agents he tries to influence, but there is no guarantee he 
will be actually capable of influencing them.

Alternative society models

The containment strategies presented above will be tested in three agent-based society 
models differing for the choice of the proximity threshold ǫ(xi(k)). These artificial socie-
ties are populated by agents affected by the confirmation bias [58], an ubiquitous psy-
chological phenomenon that makes the agents reluctant to be influenced by individuals 
whose opinions are too different. Indeed, they are anchored to their beliefs and opinions 
and avoid the contrasts and the comparison with the diversity. However, the three sce-
narios are characterized by different levels of extremism, which translates into a different 
appeal of moderate (extremist) agents, which are agents with opinions closer to (further 

1 Notice that this random extraction has no memory, i.e., Pr(aij(k + 1) = a | aij(k) = b) = Pr(aij(k + 1) = a) for all 
a, b ∈ {0, 1}, and thus FP(k + 1) is independent from FP(k).
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from) the average. Before proceeding with the description of the alternative scenarios, it 
is worth noticing that Eq. (1) can be rewritten as

where x(k) = [x1(k), . . . , xl+f (k)]
T, and Ã(k) is row-stochastic. Therefore, as the initial 

opinions are bounded in the set [xmin, xmax], we know that the opinions of each agent 
will remain in that set for all k [59]. Therefore, we define the center x̄ = (xmax + xmin)/2 
of this interval as the average among all the possible opinions at time 0.

Moderate society

In a moderate society, we assume that opinions closer to x̄ are accounted by a larger 
fraction of agents if compared with more extremist opinions (i.e., closer to xmin or xmax ). 
This mechanism mimics the opinion dynamics that often characterizes the society in 
western democracies [60, 61]. To model this behavior, in a moderate society we set the 
proximity threshold that quantifies the ability of an agent to influence others, as

where ρ > 0 is a parameter determining the average radius of interaction. Notice that 
0 ≤ ǫ(xi(k)) ≤ ρ(xmax − xmin)/2, with ǫ(xi(k)) = 0 when xi(k) = xmin or xi(k) = xmax, 
while ǫ(xi(k)) = ρ(xmax − xmin)/2 when xi(k) = x̄.

Extremist society

Historical examples [62], together with the empirical evidence [63, 64] that extreme 
positions are sometimes the most effective in leading the opinions in a desired range, 
motivated us to also model an extremist society in which the proximity threshold is

This scenario is diametrically opposed to the previous one. Indeed, the maximum value 
ρ(xmax − xmin)/2 of ǫ corresponds to extremist opinions (either xi(k) equal to xmax or 
xmin), while a null amplitude of ǫ corresponds to xi(k) = x̄.

Neutral society

In an intermediate society, which we denote neutral and is closer to the classical 
bounded confidence model, the proximity threshold is independent from the agents 
opinion, and given by

Remark 1 We point out that our definition of extremism differs from that given in 
[65–67], where it is considered as an attribute of the opinion, and therefore of the single 
agent. Differently, in our work the extremism is an attribute of the society, which can be 
measured by quantifying the appeal of extremist opinions.

x(k + 1) = Ã(k)x(k),

(3)ǫ(xi(k)) = ρmin (|xmax − xi(k)|, |xmin − xi(k)|),

(4)ǫ(xi(k)) = ρ|xi(k)− x̄|.

(5)ǫ(xi(k)) = ǫ =
ρ

2

(

xmax − xmin

2

)

.
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Remark 2 The selection of the proximity threshold in the three scenarios is such that if 
the initial conditions are taken from a uniform distribution between xmin and xmax, the 
expected value for ǫ(xi(0)) is the same and equal to

Numerical analysis
Here, we design a set of numerical simulations to test the effectiveness of the alternative 
containment strategies in the three agent-based society models introduced above. We 
start by noticing that containment can be more or less easy to attain depending on the 
absolute and relative location of the leaders. Indeed, (i) the more packed their opinions 
are (the smaller their convex hull is), the more difficult the control goal will be, and (ii) 
depending on the considered scenario, also their distance from the average opinion may 
impact their capability of influencing (and then, of containing). Therefore, denoting by 
w(·) the width of an interval, we introduce the leaders’ disagreement

which is the higher the more the opinions of the leaders are spread, and the leaders’ 
polarization

which measures the average difference between the leaders’ opinions and x̄.
To test the effectiveness of the proposed containment strategies, we performed exten-

sive numerical simulations for a selected combination of δℓ and pℓ.
Numerical setup We consider a group populated by f followers with initial opinions 

xi(0) = xi0 uniformly distributed in the interval [xmin = 0, xmax = 1] and l = 0.02f  
leaders. The latter are equally split in two groups with contrasting opinions, such that 
δℓ � 0.5 and pℓ � 0.25. Moreover, the adjacency matrix AF↔F  corresponds to an undi-
rected scale-free-like graph and, for each scenario, we set ρ = 1. We consider 861 combi-
nations for the values of δℓ and pℓ. Namely, we vary δℓ between 0 and 0.5 and pℓ between 
0 and 0.25, with step 0.0125, and then make the Cartesian product. Furthermore, to 
understand if and how the effectiveness of the containment strategies is affected by the 
network size, we first discuss their effectiveness when f = 100 and then discuss what 
happens when the network size increases.

f = 100

Here, for each parameter combination, scenario, and containment strategy, we perform 
a set of 100 simulations differing for the randomly generated initial conditions of the fol-
lowers, and evaluate the average fraction φ̄(δℓ, pℓ) of contained followers.

ρ

2

(

xmax − xmin

2

)

.

(6)δℓ = w(Co(Xℓ)) = max
i∈L

xi −min
i∈L

xi,

(7)pℓ =
1

|L|

|L|
∑

i=1

(xi − x̄),
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Reference scenario: Strategy 0

Strategy 0 represents the simplest possible pinning strategy, as it is static and completely 
random. Indeed, it can be implemented when there is no information on the potential 
interconnections among the followers (i.e., on AF↔F) and when the potential influences 
from the leaders to the followers cannot be updated (i.e., AL→F (k) = AL→F). There-
fore, we consider the performance of this strategy as a reference for the more sophisti-
cated Strategies 1–3.

From the numerical analysis, we observe that, even though the expected width of the 
proximity threshold is the same for all scenarios (see Remark 2), there is a palpable dif-
ference in the fraction of followers contained that decreases together with the level of 
extremism in the society. From Fig. 2b, it is evident that in a society populated by mod-
erate agents, independently of the parameters δℓ and pℓ, in average almost all the follow-
ers are contained (φ̄(δℓ, pℓ) ≃ 0.98). Moreover, the full opinion containment (q = |F | ) is 
achieved in the 58% of the cases, see Table 1. Indeed, in more extremist societies, opin-
ions tend to be clustered on the extremes, with the network graph G(k) often split in 
at least two disconnected groups, while in moderate societies opinions are easier to be 
contained in a given set of interest, with G(k) often preserving weak connectivity as k 
increases.

In scenarios other than the moderate one, the impact of the parameter δℓ is evident, 
see Fig. 2b, c. As expected, both in the neutral and in the extremist scenario, we observe 
that the higher is the disagreement (and therefore the width of the convex hull where we 
aim at containing the followers), the higher is the fraction of contained followers. This 
is a consequence of the fact that the control goal becomes less and less challenging as δℓ 
increases. This is clearly illustrated by Fig. 3a, which shows how the control goal for high 

a b

c
Fig. 2 Average fraction of the f = 100 followers contained in the convex hull spanned by the leaders under 
Strategy 0. a Moderate scenario, b extremist scenario, c neutral scenario
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values of δℓ would be achieved even if the leaders could not communicate with the fol-
lowers (i.e., AL→F = 0l×f ), which is instead crucial for low values of δℓ and high values 
of pℓ.

Strategies 1 and 2: static pinning

Here, we assume that the leaders have information on the potential relations among 
the followers. Specifically, we assume that the leaders are aware of potential degree of 
each followers, that is, they know the row-sums of AF↔F . In our numerical analysis, 
we tested two opposite strategies. Namely, Strategy 1 consists into pinning the follow-
ers that have the largest number of potential connections, while Strategy 2 proposes the 
opposite. While the rationale of the first strategy is apparent, that behind Strategy 2 is 
more subtle. Indeed, Strategy 2 proposes to pin the leaves as they are the easiest to be 
influenced: they will only perceive the influence of a small fraction of individuals other 
than the leaders.

However, the numerical analysis shows that the impact of these targeted pinning strat-
egies is mostly negligible, see Fig. 4. For Strategy 1, we observe a noticeable effect only 
in the extremist scenario when δℓ is high and pℓ is low. This could be explained as a high 
value of δℓ makes the containment task relatively easier, and therefore even a small con-
tribution from the leaders might be relevant. Moreover, the combination of a high value 
of δℓ and of a low value of the polarization pℓ makes the proximity threshold of one of 
the two leaders negligible, almost nullifying its contribution to the achievement of con-
tainment. In this configuration, the possibility for the more extremist leader of pinning 

a b

c
Fig. 3 Difference between the average fraction of the f = 100 followers contained under Strategy 0 and 
the case AL→F = 0l×f  (i.e., the leaders cannot influence the followers). a Moderate scenario, b extremist 
scenario, c neutral scenario
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the hubs noticeably enhances the fraction of contained followers: its influence, although 
mitigated by the strong connectivity of the hubs with their peers, succeeds in steering 
additional followers in the convex hull spanned by the leaders, see Fig. 4b.

On the other hand, analyzing the effectiveness of Strategy 2, we observe no noteworthy 
difference with Strategy 0, see Fig. 5. This is strictly related to the scale-free like topol-
ogy of the graph (associated to AF↔F) describing the potential connections among the 
followers. Indeed, as the 70% of the nodes are only connected to one node (i.e., they are 
leaves), randomly selecting the pinned nodes (Strategy 0) is expected to be equivalent to 
pinning the leaves in the 70% of the simulations.

Strategy 3: Time‑varying pinning

As observed above, the two static strategies are not capable of significantly affecting the 
fraction of contained followers, with the exception of Strategy 1 for specific values of the 
parameters in the extremist society. Therefore, we looked for alternative strategies capa-
ble of substantially improve the performance. We postulated that changing with time the 
set of leaders at every iteration could relevantly increase the number of followers directly 
affected by the leaders, thus enhancing the performance of the containment strategy. To 
test this hypothesis, we devised what we called Strategy 3, which prescribes to randomly 
select the pinned nodes at each iteration (independently from the selection at previ-
ous iterations). Notice that this simple strategy does not require any knowledge on the 
degree distribution of the network, differently from Strategies 1 and 2. Nonetheless, we 
observe a strong enhancement of the performance, see Figs. 6, 7 and Table 1, if com-
pared to any of the static pinning strategies. Indeed, the fraction of contained followers 

a b

c
Fig. 4 Difference between the average fraction of the f = 100 followers contained under Strategy 1 and 
under Strategy 0. a Moderate scenario, b extremist scenario, c neutral scenario
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increases for any combination of the parameters. The improvement is particularly rel-
evant in the neutral and extremist scenarios, which are more reluctant to containment. 
In particular, we observe that, even in the extremist case, for favorable combination of 
the parameters, full containment can be achieved (ψ > 0 in all scenarios, see Table 1). 
Moreover, even when full containment is not achieved, the fraction of contained fol-
lowers significantly increases. For instance, in the extremist scenario, additional 20 and 
23% of the total number of followers are contained if compared to Strategies 1 and 2, 
respectively, see again Table  1. Clearly, this strong improvement of the performance 
comes at the price of having to generate at every time instant the graph of the potential 

a b

c
Fig. 5 Difference between the average fraction of the f = 100 followers contained under Strategy 2 and 
under Strategy 0. a Moderate scenario, b extremist scenario, c neutral scenario

a b
Fig. 6 Average fraction of the f = 100 followers contained in the convex hull spanned by the leaders under 
Strategy 3. a Extremist scenario, b neutral scenario
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communication from the leaders to the followers, which means that at each time instant 
the leaders attempt to influence different sets of agents.

Increasing the network size

Here, we investigate how the network size affects the performance of the proposed pin-
ning strategies. Indeed, when the network is small, the effectiveness of the static strate-
gies may be limited by the fact that the difference between the lowest and highest node 
degrees is reduced because of the network size. This observation is confirmed by looking 
at Table 1 that shows how the performance of Strategies 1 and 2 is comparable with that 
of the simplest and random Strategy 0. The situation instead changes when the number 
of nodes increases. As an example, we report in Table 2 the outcome of the simulations 
performed on a network of f = 400 followers: for each scenario, pinning strategy, and 

a b
Fig. 7 Difference between the average fraction of the f = 100 followers contained under Strategy 3 and 
under Strategy 0. a Extremist scenario, b neutral scenario

Table 1 Network of f = 100 followers

For each scenario and containment strategy, we report the average fraction of contained followers (�̄), the average fraction 
of the simulations in which full containment is achieved (�̄), and the expected average degree of the pinned followers 
(< d >P)
a Here, the leaders are disconnected from the followers, and therefore there are no pinned nodes

Strategy Scenario ¯� ¯� < d >P

AL→F = 0l×f Moderate 0.49 0.01

Extremist 0.18 0 –a

Neutral 0.30 0

St.0 Moderate 0.98 0.58

Extremist 0.23 0 2.00

Neutral 0.53 0

St.1 Moderate 0.97 0.33

Extremist 0.27 0 9.25

Neutral 0.54 0

St.2 Moderate 0.98 0.64

Extremist 0.24 0 1.00

Neutral 0.54 0

St.3 Moderate 1.00 1.00

Extremist 0.47 0.01 2.00

Neutral 0.78 0.01
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parameter combination, the results are averaged over 30 repetitions. We emphasize that 
the results are qualitatively unchanged when further increasing the network size. As it 
can be observed from Fig.  8, when the number of nodes increases, the impact of the 

a b

c
Fig. 8 Average fraction of the f = 400 followers contained in the convex hull spanned by the leaders under 
Strategy 0. a Moderate scenario, b extremist scenario, c neutral scenario

Table 2 Network of f = 400 followers

For each scenario and containment strategy, we report the average fraction of contained followers (�̄), the average fraction 
of the simulations in which full containment is achieved (�̄), and the expected average degree of the pinned followers 
(< d >P)
a Here, the leaders are disconnected from the followers, and therefore there are no pinned nodes

Strategy Scenario ¯� ¯� < d >P

AL→F = 0l×f Moderate 0.49 0.01

Extremist 0.18 0 −a

Neutral 0.30 0

St.0 Moderate 0.98 0.42

Extremist 0.27 0 2

Neutral 0.68 0.1

St.1 Moderate 0.94 0.42

Extremist 0.43 0 9

Neutral 0.67 0.12

St.2 Moderate 0.97 0.42

Extremist 0.46 0 5

Neutral 0.70 0.11

St.3 Moderate 0.98 0.49

Extremist 0.36 0 10.5

Neutral 0.66 0
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parameters δℓ and pℓ are unchanged. However, the effect of the network size is indeed 
noticeable when comparing static versus time-varying pinning strategies. Indeed, we 
observed that the advantage of adopting a time-varying strategy is lost. As for lower 
number of nodes, the moderate scenario results to be the least challenging for the con-
tainment strategies: even the simplest Strategy 0 proves effective in containing almost all 
the agents, see Fig. 8. However, when the number of nodes is increased, we observe that 
in the extremist scenario the static strategies become significantly more efficient than 
Strategy 0 and, maybe more surprisingly, also of the time-varying Strategy 3. The clear 
differentiation from Strategy 0 is due to the fact that now the topological information 
leveraged by Strategies 1 and 2 indeed matters: as the network size increases, the degree 
distribution starts to approach to a power law, and the degree of the hubs and of the 
leaves starts to become significantly different. At the same time, we observe the degrada-
tion of the performance of the time-varying strategy with the increase of the network 
size. Indeed, continuously switching the set of nodes a leader tries to influence is reward-
ing only for small networks such that the blinking control signal can quickly propagate 
through the network. Differently, in large networks this blinking containment strategy 
loses its efficacy: the advantage of randomly sending inputs to all the network nodes is 
indeed canceled out by the slow propagation of these signals across the network.

Conclusions
In this paper, we have formulated the problem of steering the opinion of a group of indi-
viduals as a containment control problem. Differently from the consensus setting, we 
relax the aim of perfect opinions’ convergence, and study the problem of containing 
them in the convex hull of the opinions of a set of leaders. The containment of opin-
ion rather than their consensus is considered to model several real scenarios, such as a 
referendum, where those who vote yes (or equivalently no) do not share the exact same 
opinion, but their opinion is contained in a range leading to the same final decision of 
voting yes (no) [40].

Departing from the classical bounded confidence models, we have considered the case 
in which the possibility of an individual (be him a leader or a follower) of influencing 
the others depends on his state, that is, on his opinion. In particular, depending on the 
extent of the extremism permeating the society, individuals with more extreme opin-
ions are more or less effective in promoting their views. Therefore, we have presented 
three alternative society models, a moderate, a neutral, and an extremist one. Assum-
ing the presence of two leaders in the group, we numerically explored alternative selec-
tions of the pinned nodes, that is, of the nodes the leaders try to directly influence. In 
all the three society models, we numerically tested the effectiveness of three alternative 
containment strategies, for different values of the leaders’ disagreement and polarization 
with respect to the average opinion. Specifically, two containment strategies are static, 
and prescribe to pin the most (the hubs) and the least (the leaves) connected follow-
ers, respectively. The third, instead, is time-varying and assumes to randomly select the 
pinned nodes at every time instant. Numerical evidence strongly supports the effective-
ness of this time-varying strategy over the static ones when the network size is small 
(N ≈ 100), even in the extremist society where containment is harder to achieve. This 
excellent performance is obtained without relying on any information on the degree 
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distribution of the network describing the potential communications among the follow-
ers: this comes at the price of requiring the ability of changing at every time instant the 
set of followers the leaders try to control. However, as the number of nodes increases, 
the relevance of the topological information becomes bigger and bigger, and therefore 
the informed static strategies start to outperform the non-informed time-varying strate-
gies. Future works will (i) investigate alternative stochastic strategies to enhance the per-
formance when local or global information on the topology of the followers is available 
and the number of network nodes increases; (ii) test the strategies in mixed societies, 
characterized by clusters of agents with different levels of extremism; (iii) reconstruct 
the influence path flow to quantify the extent of the direct (due to the links among lead-
ers and followers) and indirect (due to the paths among leaders and followers) influence 
power of the leaders employing information theory concepts [68–70]; and (iv) validate 
the model through appropriate experiments designed leveraging the potential of the so-
called Citizen Science [71].
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