421 research outputs found

    Global gene expression analysis provides insight into local adaptation to geothermal streams in tadpoles of the Andean toad Rhinella spinulosa

    Get PDF
    Indexación: Web of Science; Scopus.The anuran Rhinella spinulosa is distributed along the Andes Range at altitudes that undergo wide daily and seasonal variation in temperature. One of the populations inhabits geothermal streams, a stable environment that influences life history traits such as the timing of metamorphosis. To investigate whether this population has undergone local adaptation to this unique habitat, we carried out transcriptome analyses in animals from two localities in two developmental stages (prometamorphic and metamorphic) and exposed them to two temperatures (20 and 25 degrees C). RNA-Seq, de novo assembly and annotation defined a transcriptome revealing 194,469 high quality SNPs, with 1,507 genes under positive selection. Comparisons among the experimental conditions yielded 1,593 differentially expressed genes. A bioinformatics search for candidates revealed a total of 70 genes that are highly likely to be implicated in the adaptive response of the population living in a stable environment, compared to those living in an environment with variable temperatures. Most importantly, the population inhabiting the geothermal environment showed decreased transcriptional plasticity and reduced genetic variation compared to its counterpart from the non-stable environment. This analysis will help to advance the understanding of the molecular mechanisms that account for the local adaptation to geothermal streams in anurans.https://www.nature.com/articles/s41598-017-01982-

    Radiative forcing from aircraft emissions of NOx: model calculations with CH4 surface flux boundary condition

    Get PDF
    © 2017 The authors. Two independent chemistry-transport models with troposphere-stratosphere coupling are used to quantify the different components of the radiative forcing (RF) from aircraft emissions of NO x , i.e., the University of L'Aquila climate-chemistry model (ULAQ-CCM) and the University of Oslo chemistry-transport model (Oslo-CTM3). The tropospheric NO x enhancement due to aircraft emissions produces a short-term O 3 increase with a positive RF (+17.3mW/m 2 ) (as an average value of the two models). This is partly compensated by the CH 4 decrease due to the OH enhancement (-9.4mW/m 2 ). The latter is a long-term response calculated using a surface CH 4 flux boundary condition (FBC), with at least 50 years needed for the atmospheric CH 4 to reach steady state. The radiative balance is also affected by the decreasing amount of CO 2 produced at the end of the CH 4 oxidation chain: an average CO 2 accumulation change of -2.2 ppbv/yr is calculated on a 50 year time horizon (-1.6mW/m 2 ). The aviation perturbed amount of CH 4 induces a long-term response of tropospheric O 3 mostly due to less HO 2 and CH 3 O 2 being available for O 3 production, compared with the reference case where a constant CH 4 surface mixing ratio boundary condition is used (MBC) (-3.9mW/m 2 ). The CH 4 decrease induces a long-term response of stratospheric H2O (-1.4mW/m 2 ). The latter finally perturbs HO x and NO x in the stratosphere, with a more efficient NO x cycle for mid-stratospheric O 3 depletion and a decreased O 3 production from HO 2 +NO in the lower stratosphere. This produces a long-term stratospheric O 3 loss, with a negative RF (-1.2mW/m 2 ), compared with the CH 4 MBC case. Other contributions to the net NO x RF are those due to NO 2 absorption of UV-A and aerosol perturbations (the latter calculated only in the ULAQ-CCM). These comprise: increasing sulfate due to more efficient oxidation of SO 2 , increasing inorganic and organic nitrates and the net aerosols indirect effect on warm clouds. According to these model calculations, aviation NO x emissions for 2006 produced globally a net cooling effect of -5.7mW/m 2 (-6.2 and -5.1mW/m 2 , from ULAQ and Oslo models, respectively). When the effects of aviation sulfur emissions are taken into account in the atmospheric NO x balance (via heterogeneous chemistry), the model-average net cooling effects of aviation NO x increases to -6.2mW/m 2 . Our study applies to a sustained and constant aviation NO x emission and for the given background NOy conditions. The perturbation picture, however, may look different if an increasing trend in aviation NO x emissions would be allowed

    The microanalysis of iron and sulphur oxidation states in silicate glass - Understanding the effects of beam damage

    Get PDF
    Quantifying the oxidation state of multivalent elements in silicate melts (e.g., Fe²⁺ versus Fe³⁺ or S²⁻ versus S⁶⁺) is fundamental for constraining oxygen fugacity. Oxygen fugacity is a key thermodynamic parameter in understanding melt chemical history from the Earth's mantle through the crust to the surface. To make these measurements, analyses are typically performed on small (<100 µm diameter) regions of quenched volcanic melt (now silicate glass) forming the matrix between crystals or as trapped inclusions. Such small volumes require microanalysis, with multiple techniques often applied to the same area of glass to extract the full range of information that will shed light on volcanic and magmatic processes. This can be problematic as silicate glasses are often unstable under the electron and photon beams used for this range of analyses. It is therefore important to understand any compositional and structural changes induced within the silicate glass during analysis, not only to ensure accurate measurements (and interpretations), but also that subsequent analyses are not compromised. Here, we review techniques commonly used for measuring the Fe and S oxidation state in silicate glass and explain how silicate glass of different compositions responds to electron and photon beam irradiation

    Pyrimidine salvage in Toxoplasma gondii as a target for new treatment

    Get PDF
    Toxoplasmosis is a common protozoan infection that can have severe outcomes in the immunocompromised and during pregnancy, but treatment options are limited. Recently, nucleotide metabolism has received much attention as a target for new antiprotozoal agents and here we focus on pyrimidine salvage by Toxoplasma gondii as a drug target. Whereas uptake of [3H]-cytidine and particularly [3H]-thymidine was at most marginal, [3H]-uracil and [3H]-uridine were readily taken up. Kinetic analysis of uridine uptake was consistent with a single transporter with a Km of 3.3 ± 0.8 µM, which was inhibited by uracil with high affinity (Ki = 1.15 ± 0.07 µM) but not by thymidine or 5-methyluridine, showing that the 5-Me group is incompatible with uptake by T. gondii. Conversely, [3H]-uracil transport displayed a Km of 2.05 ± 0.40 µM, not significantly different from the uracil Ki on uridine transport, and was inhibited by uridine with a Ki of 2.44 ± 0.59 µM, also not significantly different from the experimental uridine Km. The reciprocal, complete inhibition, displaying Hill slopes of approximately -1, strongly suggest that uridine and uracil share a single transporter with similarly high affinity for both, and we designate it uridine/uracil transporter 1 (TgUUT1). While TgUUT1 excludes 5-methyl substitutions, the smaller 5F substitution was tolerated, as 5F-uracil inhibited uptake of [3H]-uracil with a Ki of 6.80 ± 2.12 µM (P &gt; 0.05 compared to uracil Km). Indeed, we found that 5F-Uridine, 5F-uracil and 5F,2’-deoxyuridine were all potent antimetabolites against T. gondii with EC50 values well below that of the current first line treatment, sulfadiazine. In vivo evaluation also showed that 5F-uracil and 5F,2’-deoxyuridine were similarly effective as sulfadiazine against acute toxoplasmosis. Our preliminary conclusion is that TgUUT1 mediates potential new anti-toxoplasmosis drugs with activity superior to the current treatment

    Annihilation of low energy antiprotons in silicon

    Full text link
    The goal of the AEgˉ\mathrm{\bar{g}}IS experiment at the Antiproton Decelerator (AD) at CERN, is to measure directly the Earth's gravitational acceleration on antimatter. To achieve this goal, the AEgˉ\mathrm{\bar{g}}IS collaboration will produce a pulsed, cold (100 mK) antihydrogen beam with a velocity of a few 100 m/s and measure the magnitude of the vertical deflection of the beam from a straight path. The final position of the falling antihydrogen will be detected by a position sensitive detector. This detector will consist of an active silicon part, where the annihilations take place, followed by an emulsion part. Together, they allow to achieve 1% precision on the measurement of gˉ\bar{g} with about 600 reconstructed and time tagged annihilations. We present here, to the best of our knowledge, the first direct measurement of antiproton annihilation in a segmented silicon sensor, the first step towards designing a position sensitive silicon detector for the AEgˉ\mathrm{\bar{g}}IS experiment. We also present a first comparison with Monte Carlo simulations (GEANT4) for antiproton energies below 5 MeVComment: 21 pages in total, 29 figures, 3 table

    Fluidal pyroclasts reveal the intensity of peralkaline rhyolite pumice cone eruptions

    Get PDF
    This work is a contribution to the Natural Environment Research Council (NERC) funded RiftVolc project (NE/L013932/1, Rift volcanism: past, present and future) through which several of the authors are supported. In addition, Clarke was funded by a NERC doctoral training partnership grant (NE/L002558/1).Peralkaline rhyolites are medium to low viscosity, volatile-rich magmas typically associated with rift zones and extensional settings. The dynamics of peralkaline rhyolite eruptions remain elusive with no direct observations recorded, significantly hindering the assessment of hazard and risk. Here we describe uniquely-preserved, fluidal-shaped pyroclasts found within pumice cone deposits at Aluto, a peralkaline rhyolite caldera in the Main Ethiopian Rift. We use a combination of field-observations, geochemistry, X-ray computed microtomography (XCT) and thermal-modelling to investigate how these pyroclasts are formed. We find that they deform during flight and, depending on size, quench prior to deposition or continue to inflate then quench in-situ. These findings reveal important characteristics of the eruptions that gave rise to them: that despite the relatively low viscosity of these magmas, and similarities to basaltic scoria-cone deposits, moderate to intense, unstable, eruption columns are developed; meaning that such eruptions can generate extensive tephra-fall and pyroclastic density currents.Publisher PDFPeer reviewe
    corecore