2,227 research outputs found

    Considerations about learning Word2Vec

    Get PDF
    AbstractDespite the large diffusion and use of embedding generated through Word2Vec, there are still many open questions about the reasons for its results and about its real capabilities. In particular, to our knowledge, no author seems to have analysed in detail how learning may be affected by the various choices of hyperparameters. In this work, we try to shed some light on various issues focusing on a typical dataset. It is shown that the learning rate prevents the exact mapping of the co-occurrence matrix, that Word2Vec is unable to learn syntactic relationships, and that it does not suffer from the problem of overfitting. Furthermore, through the creation of an ad-hoc network, it is also shown how it is possible to improve Word2Vec directly on the analogies, obtaining very high accuracy without damaging the pre-existing embedding. This analogy-enhanced Word2Vec may be convenient in various NLP scenarios, but it is used here as an optimal starting point to evaluate the limits of Word2Vec

    Void Fraction Near Surfaces Immersed in Fluidized Beds by Heat Transfer Measurements

    Get PDF
    A semi-empirical model is used to calculate the averaged surface void fraction in fluidized beds, εw, starting from experimental data on surface-to-bed heat transfer coefficient. The model is able to describe the effect of the main process parameters and shows that εw increases with minimum fluidization void fraction and particle Archimedes number

    Optimized Realization of Bayesian Networks in Reduced Normal Form using Latent Variable Model

    Full text link
    Bayesian networks in their Factor Graph Reduced Normal Form (FGrn) are a powerful paradigm for implementing inference graphs. Unfortunately, the computational and memory costs of these networks may be considerable, even for relatively small networks, and this is one of the main reasons why these structures have often been underused in practice. In this work, through a detailed algorithmic and structural analysis, various solutions for cost reduction are proposed. An online version of the classic batch learning algorithm is also analyzed, showing very similar results (in an unsupervised context); which is essential even if multilevel structures are to be built. The solutions proposed, together with the possible online learning algorithm, are included in a C++ library that is quite efficient, especially if compared to the direct use of the well-known sum-product and Maximum Likelihood (ML) algorithms. The results are discussed with particular reference to a Latent Variable Model (LVM) structure.Comment: 20 pages, 8 figure

    Intent Classification in Question-Answering Using LSTM Architectures

    Full text link
    Question-answering (QA) is certainly the best known and probably also one of the most complex problem within Natural Language Processing (NLP) and artificial intelligence (AI). Since the complete solution to the problem of finding a generic answer still seems far away, the wisest thing to do is to break down the problem by solving single simpler parts. Assuming a modular approach to the problem, we confine our research to intent classification for an answer, given a question. Through the use of an LSTM network, we show how this type of classification can be approached effectively and efficiently, and how it can be properly used within a basic prototype responder.Comment: Presented at the 2019 Italian Workshop on Neural Networks (WIRN'19) - June 201

    An Analysis of Word2Vec for the Italian Language

    Full text link
    Word representation is fundamental in NLP tasks, because it is precisely from the coding of semantic closeness between words that it is possible to think of teaching a machine to understand text. Despite the spread of word embedding concepts, still few are the achievements in linguistic contexts other than English. In this work, analysing the semantic capacity of the Word2Vec algorithm, an embedding for the Italian language is produced. Parameter setting such as the number of epochs, the size of the context window and the number of negatively backpropagated samples is explored.Comment: Presented at the 2019 Italian Workshop on Neural Networks (WIRN'19) - June 201

    A Unifying View of Estimation and Control Using Belief Propagation With Application to Path Planning

    Get PDF
    The use of estimation techniques on stochastic models to solve control problems is an emerging paradigm that falls under the rubric of Active Inference (AI) and Control as Inference (CAI). In this work, we use probability propagation on factor graphs to show that various algorithms proposed in the literature can be seen as specific composition rules in a factor graph. We show how this unified approach, presented both in probability space and in log of the probability space, provides a very general framework that includes the Sum-product, the Max-product, Dynamic programming and mixed Reward/Entropy criteria-based algorithms. The framework also expands algorithmic design options that lead to new smoother or sharper policy distributions. We propose original recursions such as: a generalized Sum/Max-product algorithm, a Smooth Dynamic programming algorithm and a modified versions of the Reward/Entropy algorithm. The discussion is carried over with reference to a path planning problem where the recursions that arise from various cost functions, although they may appear similar in scope, bear noticeable differences. We provide a comprehensive table of composition rules and a comparison through simulations, first on a synthetic small grid with a single goal with obstacles, and then on a grid extrapolated from a real-world scene with multiple goals and a semantic map

    Deletion of Lactate Dehydrogenase-A Impairs Oncogene-Induced Mouse Hepatocellular Carcinoma Development

    Get PDF
    Hepatocellular carcinoma (HCC) is a multistep process whereby abnormally proliferating cancer cells undergo extensive metabolic reprogramming. Metabolic alterations in hepatocarcinogenesis depend on the activation of specific oncogenes, thus partially explaining HCC heterogeneity. c-Myc oncogene overexpression, frequently observed in human HCCs, leads to a metabolic rewiring toward a Warburg phenotype and production of lactate, resulting in the acidification of the extracellular space, favoring the emergence of an immune-permissive tumor microenvironment. Here, we investigated whether Ldha genetic ablation interferes with metabolic reprogramming and HCC development in the mouse
    • …
    corecore